

MODEL 862 DEPOSITION CONTROLLER

INSTRUCTION MANUAL

Copyright © TELEMARK, 1995-2023 – All rights reserved Manual Rev 1.0.7 August 2023

telemark.com

Current interface and software options might be different. Contact manufacturer for current manual release if the software interface or functions are different from this manual or download the current version of this manual at

https://telemark.com/quartz-crystal-control/deposition-controllers/

Brand and product names are trademarks or registered trademarks of their respective companies

TABLE OF CONTENTS

1	ΙΝΤΙ	RODUCTION	.12
	1.1	INTENDED USE	12
	1.2	LIABILITIES AND WARRANTY	12
		SAFETY ersonnel Qualifications ustration of Residual Dangers	13
	1.4	GENERAL SAFETY INSTRUCTIONS	14
	1.5	SOFTWARE	15
2	TEC	HNICAL DATA	.16
	An Us	GENERAL DATA echanical Data nbience se and Operating Modes andards	16 17 18
	2.2	MAINS CONNECTION	18
		PACK LISTandard Items	19
	2.4 Me		24
	Co Pro Pro Ma	ommunication ogram Storage Capacity ocess Parameters aterial Parameters ensor Profile, Optional	24 24 25
	-	out/Output Capability ource/Sensor Capability	
	Os	scillator Capability	27
		ensor Parameters purce Parameters AC 27	
		ility Parameters splay Parameters	
	2.5	FEATURES	28

TELEMARK Model 862 Deposition Controller Manual

	2.6 Inp	INTERFACES	
3	INS ⁻	TALLATION	
	3.1	UNPACKING	30
	3.2 Re	MECHANICAL INSTALLATION	
	3.3	INSTALLATION	
	Ra	ack Installation	
	3.4		
		ont Panel ear Panel	
		ains Connection	
		ounding	
	-	S-232 35	
		hernet purce-Sensor	
		screte Input, 25 Pin	
		screte Output, 25 Pin	
	Inp	out/Output, 37 Pin	41
	3.5	INSTALLING ADDITIONAL BOARDS	44
		purce-Sensor Board	
		screte I/O Board	
	3.6	SENSOR HEAD INSTALLATION	44
	3.7	SENSOR OSCILLATOR	45
	3.8	OSCILLATOR TEST	46
	3.9	INSTRUMENTATION FEEDTHROUGH	46
	3.10	SENSOR CRYSTAL REPLACEMENT	47
	3.11	REMOTE CONTROL	47
4	USI	NG THE 862	48
	Po	FRONT PANEL ain Power Switch ower On LED indicator andheld SB 49	
	LC	D Touchscreen	
	4.2	HANDHELD	50

TELEMARK

Model	862	Deposition	Controller	Manual
		•		

	4.3 TOUCH SCREEN OPERATION Program Menu Results 51 USB 51 Right Side Bar Buttons Entering Alpha Characters Copying, Deleting and Moving	50 54 55			
5	CONFIGURATION	57			
	5.1 GETTING STARTED	57			
	5.2 SETUP Display 58 Inputs 61 Outputs 63 Actions 67 Sensor 69 Source 72 DAC 75 Utility 76	58			
	5.3 SENSOR PROFILE - OPTIONAL	78			
	 5.4 MATERIAL Define A Material 5.5 PROCESS Define A Process 	80 88			
6	OPERATION	92			
	6.1 INITIAL POWER UP	92			
	6.2 DISPLAYS Rate 94 Power 94	93			
	Thickness				
	Process Name, Layer Number and Material				
	Film Number				
	-	95 95			
	Film Number				
	Film Number System Status Source Number Pocket Number Sensor Number	95 95 95 95 95 95			
	Film Number System Status Source Number Pocket Number Sensor Number Crystal Health %	95 95 95 95 95 95 95 95			
	Film Number System Status Source Number Pocket Number Sensor Number	95 95 95 95 95 95 95 95 96			

TELEMARK Model 862 Deposition Controller Manual

6.3 OPERATING CONTROLS	96
Manual Button	
Start Button	
Abort Button	
Reset Button	
Zero Button Shutter Button	
6.4 SIDE BAR CONTROLS	
Status Button Program Button	
-	
6.5 MANUAL POWER HANDHELD	
6.6 SIMULATE OPERATION	
6.7 STARTING A PROCESS	99
6.8 STARTING A NEW LAYER	
6.9 RESUMING AN ABORTED OR HALTED PROCES	S100
6.10 STATUS DISPLAYS	
6.11 MODES Ready 102	102
Abort 102	
In Process	
Not Sampling	
Process Complete	
Manual 103	
Simulate	
6.12 STATES	103
6.13 ERROR, WARNING, AND INFORMATION MESSA	GES103
Description	
Min Rate & Max Power	
Max Rate & Min Power	
Rate Est. Error	
Crystal Failure	
Time Power	
Rate Dev. Alarm	
Alarm Action Crystal Marginal	
Rate Dev. Alert	
Max Power Alert	
Min Power Alert	
Alert Action	

TELEMARK Model 862 De

 /odel 862	Deposition	Controller	Manual

	Xt Ra Mi Cł Cł	al Fail Switch al Mrgn Switch ate Dev. Atten aximum Power nimum Power nange Pocket	106 106 106 106 106 106 106
7			
-	7.1	ESTABLISHING 862 CONTROL LOOP PARAMETERS	
	7.2	EMPIRICAL CALIBRATION	108
		m Density	
		oling Factor oustic Impedance	
8		ORY OF OPERATION	
	8.1	BASIC MEASUREMENT	
	8.2	CRYSTAL HEALTH CALCULATION	111
	8.3	RATE CALCULATION	112
	8.4	RATE CONTROL	112
	Тс	EMPIRICAL CALIBRATION m Density poling Factor coustic Impedance	112 113
	8.6	CRYSTAL AVERAGING	113
	8.7	CO-DEPOSITION	114
9	STA		
	9.1	GENERAL	116
	9.2	RS-232 SERIAL INTERFACE	116
	9.3	ETHERNET INTERFACE	117
	9.4	PROTOCOL	117
	9.5	DATA TYPES	118
	9.6	MESSAGE RECEIVED STATUS	118
	9.7	DEBUG COMPUTER INTERFACE	119

TELEMARK Model 862 Deposition Controller Manual

	9.8	INSTRUCTION SUMMARY	120
	9.9	INSTRUCTION DESCRIPTIONS - STANDARD	121
	Re	mote activation of controller (Code #0)	121
		nd controller hardware configuration (Code #1)	
	De	lete a material (Code #5)	122
	Se	nd a material (Code #6)	122
		ceive a material (Code #7)	
	Se	nd material list (Code #8)	124
	Se	nd process (Code #10)	124
	Se	t Process Name (Code #11)	125
	De	lete process (Code #12)	126
	Se	nd process layer (Code #13)	126
	Ins	ert process layer (Code #14)	126
	Se	t process layer (Code #15)	127
	De	lete process layer (Code #16)	127
	Se	nd a process list (Code #17)	128
	Se	nd Sensor Profile List (Code #18)	128
	Se	nd Sensor Profile (Code #19)	128
	Re	ceive Sensor Profile (Code #20)	129
	De	lete Sensor Profile (Code #21)	130
	Se	nd controller status (Code #28)	130
	Sta	art process (Code #29)	132
	Init	iate Automatic Data Logging (Code #31)	132
	Se	nd Process Log Directory (Code #36)	133
	Se	nd run-time value (Code #40)	134
	Se	nd Process run-time values (Code #41)	134
	Se	nd Material Run Time Value (Code #42)	135
	Se	nd Material Run Time Values (Code #43)	135
	Se	nd Sensor Run Time Value (Code #44)	135
	Se	nd Sensor Run Time Values (Code #45)	136
	Se	nd All Sensor Run Time Values (Code #46)	136
	Se	nd System run-time value (Code #47)	136
	Ge	t Value Updates (Code #49)	137
		lect Process (Code #51)	
	Те	rminating Connection (Code #248)	138
	Pir	ng (Code #249)	138
10	TRC	UBLE SHOOTING	139
11	MA		140
12	MAI	NTENANCE AND SERVICE	154
	12.1	MAINTENANCE	154

TELEMARK .

2////	Model 862	Deposition	Controller	Manual
	1110401 002	Dopoolaon	00110 01101	manaan

	12.2	CLEANING	154
13	STO	RAGE AND DISPOSAL	155
	13.1	PACKAGING	155
	13.2	STORAGE	155
	13.3	DISPOSAL	155
	13.4	WEEE	155
14	WAF	RRANTY CONDITIONS	157
	14.1	LIMITED WARRANTY	157

TABLE OF FIGURES

Figure 1-1, Keep Foreign Material Output of 862	14
Figure 2-1, 862 Reference Dimensions	17
Figure 3-1, Front Panel Connection	32
Figure 3-2, 862 Manual Power Handheld	33
Figure 3-3, Rear panel 862 Controller	33
Figure 3-4, Three-conductor cable with protective ground (example)	34
Figure 3-5, RS-232 Connection	35
Figure 3-6, Ethernet Connection	36
Figure 3-7, Source-Sensor Card	36
Figure 3-8, Source Connection	37
Figure 3-9, 25 Pin Input Card	37
Figure 3-10, Active 25-Pin Input Card Connections	38
Figure 3-11, Passive 25-Pin Input Card Connections	39
Figure 3-12, 25-Pin Output Card	40
Figure 3-13, 25 Pin Output Card Connections	40
Figure 3-14, 37-Pin Input/Output Card	41
Figure 3-15, 37-Pin I/O Card, Active/Passive Jumpers	41
Figure 3-16, Active 37-Pin I/O Card Connections	42
Figure 3-17, Passive 37-Pin I/O Card Connections	43
Figure 3-18, Oscillator and Cables	45
Figure 3-19, Oscillator Test button	46
Figure 3-20, Frequency on Sensor Status screen	46
Figure 4-1, Front Panel	48
Figure 4-2, Manual Power Handheld	50
Figure 4-3, Program Menu	50
Figure 4-4, Results Screen	51
Figure 4-5, USB Menu screen	51
Figure 4-6, USB System Backup/Restore	52
Figure 4-7, USB Process/Material Backup/Restore	53
Figure 4-8, Copy 862 System Data to USB	53
Figure 4-9, Copy System Data from USB to 862	53
Figure 4-10, Password screen	54

TELEMARK Model 862 Deposition Controller Manual

Figure 4-11, Keyboard	55
Figure 4-12, Copying and Deleting	56
Figure 5-1, System Setup Menu screen	57
Figure 5-2, Display Setup Screen	58
Figure 5-3, VNC Waning Screen	59
Figure 5-4, VNC Mode Screen	59
Figure 5-5, TightVNC Connection in Windows	59
Figure 5-6, Program Inputs	61
Figure 5-7, 25 pin Card, Passive/Active Setting	62
Figure 5-8, Output screen	63
Figure 5-9, Program Output Screen	64
Figure 5-10, Program Output Screen	64
Figure 5-11, Actions List	68
Figure 5-12, Action Setup	68
Figure 5-13, Action Selection	68
Figure 5-14, Sensor Setup Screen	70
Figure 5-15, Source Setup Screen	72
Figure 5-16, DAC Setup screen	75
Figure 5-17, DAC Rate and Thickness	76
Figure 5-18, Utility Setup screen	76
Figure 5-19, Select Material screen	80
Figure 5-20, Define Material screen	81
Figure 5-21, Select Process screen	88
Figure 5-22, Define Process screen	89
Figure 5-23, Define Codeposition Process screen	89
Figure 5-24, Select Layer Material screen	90
Figure 6-1, Splash Screen	92
Figure 6-2, 862 Configuration Screen	93
Figure 6-3, Operating Display	93
Figure 6-4, Operating Co-Deposition Display	93
Figure 6-5, Manual Power Handheld	98
Figure 6-6, Run Selection Screen	99
Figure 6-7, Rate vs. Time Graph	100
Figure 6-8, Rate Deviation vs. Time graph	100
Figure 6-9, Thickness vs. Time Graph	101

TELEMARK

Model 862	Deposition	Controller	Manual	
 11100001002	Dopoolaon	00110 01101	mandal	

Figure 6-10, Power vs. Time Graph	101
Figure 6-11, Source/Sensor Status screen	101
Figure 6-12, I/O Status Screen	102
Figure 6-13, Typical Process Profile	103
Figure 9-1, RS-232 Debug Computer Interface Screen	119
Figure 13-1, WEEE Symbol	156

1

INTRODUCTION

Please read this manual carefully to ensure optimum operating conditions right from the start. This user manual handbook contains important information about the functionality, installation, start-up and operation of the Model 862.

1.1 INTENDED USE

The Telemark Deposition Controller is intended for use with electron beam (EB) sources or other thin film deposition equipment.

The 862 provides automatic control of single or multi-layer film depositions in either a production or development environment. It also improves predictability and repeatability of deposited film characteristics through dependable digital control of the deposition process. It runs unattended in the fully automatic mode and provides such features as run completion in the event of crystal failure, and extensive internal checking. Performance limits and the abort feature can be set by the user.

The device is referred to as Model 862 in the remainder of this manual.

1.2 LIABILITIES AND WARRANTY

Telemark is not liable for damages resulting from improper use of the device and the guarantee expires, if the user, or third party:

- ignores information contained in this manual,
- utilizes the product in a manner inconsistent with intended purpose,
- makes any modification or alteration of the product,
- unit should not be used with unauthorized accessories (compatible accessories, types and models can be found in the product documentation)

Telemark reserves the right to make changes without prior notice. Illustrations may vary depending on the version of the device.

1.3 SAFETY

1. Personnel Qualifications

All work described in this document may only be carried out by persons who have suitable technical training and the necessary experience or who have been instructed by the end user of the product.

2. Illustration of Residual Dangers

This Operating Manual illustrates safety notes concerning residual dangers as follows:

Information on preventing any kind of physical injury.

Information on preventing extensive equipment and environmental damage.

Information on correct handling or use. Disregarding safety notes can lead to malfunctions or equipment damage.

Note: Indicates particularly important, but not safety-relevant information.

1.4 GENERAL SAFETY INSTRUCTIONS

For all work you are going to do, adhere to the applicable safety regulations. Also observe all safety notes given in this document and forward the information to all other users of the product. Pay attention to the following safety notes:

Mains voltage.

Contact with live parts is extremely hazardous when any objects are introduced, or any liquids penetrate the device.

Make sure that no objects enter the device. Keep the device dry.

Figure 1-1, Keep Foreign Material Output of 862

Improper use.

Improper use can damage the 862.

Use the 862 only as intended by the manufacturer.

Improper installation and operation data. Improper installation and operation data may damage the 862. Strictly adhere to the stipulated installation and operation data.

1.5 SOFTWARE

Parts of the 862 software are made with open source software.

Linux is licensed under GNU General Public License (GPL), version 2.

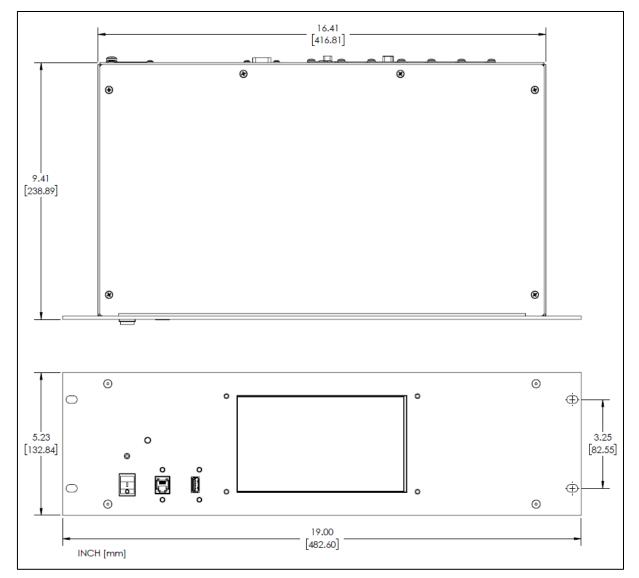
All Xenomai code running in kernel space is licensed under the terms of the Linux kernel license, GNU General Public License (GPL), version 2.

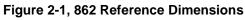
Xenomai libraries linked to application are licensed under the terms of the GNU Lesser General Public License (LGPL), version 2.1.

Qt is licensed under GNU Lesser General Public License (LGPL) version 2.1.

The original "open source" source code is available from Telemark for a nominal fee.

2 TECHNICAL DATA


2.1 GENERAL DATA


3. **Mechanical Data**

Dimensions:	19-inch (483mm) rack 3U, 5 1/4" (133mm) high x 9.41" (239mm) deep, See Fig. 2-1
Net Weight:	5.8 lb. (2.6 kg)

Controller Installation: 19" Rack standard or Bench Top unit

Assembly: Connected outside of a high vacuum system to electron beam source or other deposition source that is inside a high vacuum system.

4. Ambience

Temperature Storage:	-20+60 °C
Operation Temperature:	+5+40 °C
Relative Humidity:	Max. 80 % (up to 31 °C), decreasing to max. 50 % (above 40 °C)
Use indoor only	
Altitude:	max. 2000 m n.p.m.
The degree of dust standard:	II
Humidity resistance:	IP20

5. Use and Operating Modes

There are two common operation modes:

- 1. Manual control, with the touchscreen on the front panel
- 2. Hardware remote control with I/O interface, ethernet

This mode is active by pressing the Remote button on the touchscreen. In this mode the only button available on the touchscreen is to return to manual mode.

6. Standards

Conformity with the Directive relating to electrical equipment designed for use within certain voltage limits 73/23/EWG

Conformity with the Directive relating to electromagnetic compatibility 89/336/EWG

Harmonized and international/national standards and specifications:

EN 61010-1 (Safety requirements for electrical equipment for measurement, control and laboratory use)

EN 61000-6-2 (Electromagnetic compatibility generic immunity standard)

EN 61000-6-3 (Electromagnetic compatibility generic emission standard)

2.2 MAINS CONNECTION

Voltage:	90 to 264 VAC, 1 phase operation
Frequency:	47 - 63 Hz
Current consumption:	Max. 0.2 A at 120V, Max. 0.2 A at 230V
Power consumption:	Max. 10 W
Overvoltage category II	
Protection class 1	
Connection US	
appliance connector	IEC 320 C14
Fuse	Slow Blow, 2 A, 250 V, 5mm x 20mm

2.3 PACK LIST

7. Standard Items

The standard items included with the 862 controller are:

Part No.	Quantity	Description	
861-0500-3	1	Oscillator Assembly	TELEMARK T
861-0510-3	1	Assembly, Remote	THE REAL PROPERTY OF THE REAL
862-0600-3	1	Assembly, Chassis 862	
862-5000-1	1	Shipping Kit, 862	

862-5000-1, Shipping Kit, 862

Part No.	Quantity	Description	
122-0505-1	1	Cable, Null Modem, 9 Pin, F/F	
122-0861-1	1	Cable, Oscillator, 25 FT.	
124-0909-8	1	Connector Kit, 9 Pin, D-Sub Male	

TELEMARK MC	odel 862 De	eposition Controller Manual	TECHNICAL DATA
124-0937-9	1	Connector Kit, D-Sub, 37pin, Female	
200-0004-1	1	Telemark 851/861/862 USB Drive	TELEMARK
376-9010-1	1	Power Cord	
861-0502-1*	1	Adapter, BNC Male/Male	
880-2421-1	1	Cable, 6" BNC M-M	

* A BNC male/male adaptor is supplied for installations that have a 6-inch female BNC cable coming from the vacuum system feedthrough

If ordered at the same time as the 862 input/output cards will be installed in the unit. Below is a list of possible I/O cards that can be installed.

Part No.	Description	
120-0564-1	PCB, I/O, DB37	
120-0571-1	PCB, Input, DB25	
120-0572-1	PCB, Output, DB25	

If ordered at the same time as the 862 a second Source/Sensor card for sensors 3 and 4 will be installed.

Part No.	Description	
120-0562-2	PCB, Source Control/Sensor	

8. Optional Items

Optional items that may be ordered and shipped with an 862.

1. Additional Oscillator and shielded RJ45 cable for sensors 2, 3, and 4. 861-0505-1, Oscillator Kit

Part No.	Qty	Description	
122-0861-1	1	Cable, Oscillator, 25 FT.	
861-0500-3	1	Oscillator Assembly	TELEMARK TELEMARK TELEMARK TELEMARK
861-0502-1	1	Adapter, BNC Male/Male	Contraction of the second seco

2. Each sensor needs a 6-inch coax cable to go between the oscillator and the feedthrough. The type needed depends on the feedthrough connection.

Part No.	Description	
880-2420-8	Cable, 6" BNC Male/Microdot	
880-2421-1	Cable, 6" BNC Male/Male	S

3. Each sensor needs a 30 inch coax in-vacuum cable to go between the feedthrough and the sensor inside the vacuum chamber.

Part No.	Description	
880-2320-4	30 inch coax in-vacuum cable, Microdot	e e e e e e e e e e e e e e e e e e e

- 4. Telemark has a wide selection of O-Ring and CF flange feedthroughs available to pass the cooling water and coaxial signal in to the chamber.
- 5. Crystals

Part No.	Description	
880-0201-3	6MHz gold coated sensing crystals (Disc of 10)	
880-0202-3	6MHz aluminum alloy sensing crystals (Disc of 10)	
880-0203-3	5MHz gold coated sensing crystals (Disc of 10)	

Please refer to the Telemark Price List for feedthroughs, more accessories and other products.

2.4 SPECIFICATIONS

Electrical	
Input Supply Voltage	90 to 264 Vac (47 63 Hz), 1 phase operation *
Input Current	Max 0.2A
Mode of operation	Deposition Controller
Methods of control	Local or remote through Communication Interface
Dimensions	Controller dimensions: 19-inch (483mm) rack 2U, 3 1/2" (89mm) high x 9.41" (239mm) deep
Weight	Net Weight: 5.8 lb. (2.6 kg)

9. Measurement

Frequency Resolution	0.03 Hz @6.0 MHz
Mass Resolution	0.375 ng/cm ²
Thickness Accuracy	0.5% + 1 count
Measurement Update Rate	Dynamically adjusted, 0.5 to 10 Hz
Display Update Rate	1 Hz
Sensor Crystal Frequency	5 or 6 MHz

10. Display

Thickness Display	Autoranging: 0.000 to 999.9 KÅ
Rate Display	Autoranging: 0.0 to 999 Å/sec
Power Display	0.0 to 99.9%
Time To Go	0 to 9:59:59 H:MM:SS
Crystal Health %	0 to 99%
Layer Number	1 to 999
Graphics Display	7 Inch, 480x800 Color LCD touch screen with backlighting

11. Communication

RS-232
Ethernet (TCP/IP)

12. Program Storage Capacity

Process	99, user definable
Layer	999, user definable
Material	99, user definable

13. Process Parameters

Process Name	12 character string
Layer#	1 to 999

Co-deposit	On/Off
Material (A)	Material name
Thickness (A)	0 to 999.9 KÅ
Pocket Override (A)	0 = "use material pocket", 1 to 30
Crosstalk % A (Co-deposit only)	0 to 99.99
Material B (Co-deposit only)	Material name
Ratio % B (Co-deposit only)	0 to 999.9
Pocket Override B (Co-deposit only)	0 = "use material pocket", 1 to 30
Crosstalk % B (Co-deposit only)	0 to 99.99

14. Material Parameters

Material Name	12 character string
Thickness (Only used when run as a Film)	0 to 999.9 KÅ
Use Sensor Profile	Disable, Enable
Sensor Profile (Sensor Profile Enabled)	"Sensor Profile" Name
Sensor # (Sensor Profile Disabled)	1 to 4
Crystal # (Sensor Profile Disabled)	1 to 8
Source #	1 to 4
Pocket #	1 to 30
Material Density	0.80 to 99.9 gm/cm3
Acoustic Impedance	0.08 to 90.00 gm/cm2 sec
Tooling Factor (Sensor Profile Disabled)	10.0 to 499.9%
Proportional gain	0.00 to 9999
Integral Time constant	0 to 99.9 sec
Derivative Time constant	0 to 99.9 sec
Rise to Soak Time	0 to 9:59:59 H:MM:SS
Soak Power	0 to 99%
Soak Time	0 to 9:59:59
Soak Sweep Pattern	0 to 63
Rise to Predeposit Time	0 to 9:59:59
Predeposit Power	0 to 99.9%
Predeposit Time	0 to 9:59:59
Predeposit Sweep Pattern	0 to 63
Rate Establish Time	0, 6 to 5999 sec
Rate Establish Error	0 to 99.9%
Deposition Rate (1 to 5)	00.0 to 999.9 Å/sec
Rate Ramp	Disabled, Thickness (KÅ), Thickness (%)
Rate Ramp Start (1 to 4)	0.000 to 999.9 KÅ or 0 to 100%
Rate Ramp Stop (1 to 4)	0.000 to 999.9 KÅ or 0 to 100%
Deposition Sweep Pattern	0 to 63
Time Setpoint	0 to 9:59:59
Feed Enabled	Enabled, Disabled
Ramp to Feed Time (Feed Enabled)	0 to 9:59:59
Feed Power (Feed Enabled)	0 to 99.9%
Feed Time (Feed Enabled)	0 to 9:59:59
Feed Sweep Pattern (Feed Enabled)	0 to 63
Ramp to Idle Time	0 to 9:59:59
Idle Power	0 to 99.9%
Maximum Power	0 to 99.9%

Power Alarm Delay	0 to 99 sec
Minimum Power	0 to 99.9%
Rate Deviation Attention	0 to 99.9%
Rate Deviation Alarm	0 to 99.9%
Rate Deviation Abort	0 to 99.9%
Sample Dwell %	0 to 100.0%
Sample Period	0 to 9:59:59
Crystal Marginal %	0 to 99%
Crystal Fail (Sensor Profile Disabled)	Switch, Time Power, Halt, SwitchTimePower
Backup Sensor # (Sensor Profile Disabled)	1 to 4
Backup Tooling Factor (Sensor Profile Disabled)	0 to 499.9%
Backup Crystal # (Sensor Profile Disabled)	1 to 8
Crystal Switch Settling	0 to 240

Note: Rate Ramp Start #2-#4, Rate Ramp Stop #2-#4, and Deposit Rate #3-#5 are hidden until needed.

The 862 also has a built-in material library that contains many common material names along with their density and acoustic impedance values.

15. Sensor Profile, Optional

For sensors 1 to 4

Primary	Yes, No
Tooling Factor	10 to 499.9
Weight %	10 to 499.9
Crystal	1 to 8
Crystal Fail	Halt, Disable, Time Power, Disable/Time Power, Switch
Backup Sensor	0 = not used, 1 to 4
Backup Crystal	1 to 8

16. Input/Output Capability

There are four I/O slots in the model 862. Each slot can house one of the three following cards.

Discrete Input, 25 pin D connector PCB Part number 120-0571-1	8 fully programmable inputs The card is software configured one of two ways: Passive TTL level inputs activated by a short across input pins. Active inputs activated by 12 to 24 volts AC/DC across the input pins.
Discrete Outputs, 25 pin D connector PCB, Part number 120-0572-1	8 fully programmable outputs, SPST relay, 50VDC max, 2A max.
Discrete Input/Output, 37 pin D connector PCB Part number 120-0564-1	 8 fully programmable inputs The card is configured with jumpers one of two ways: Passive TTL level inputs activated by a short across input pins. Active inputs activated by 12 to 24 volts AC/DC across the input pins. 8 fully programmable outputs, SPST relay, 50VDC max, 2A max. 1 dedicated "Abort" output, SPST relay, 50VDC max, 2A max.

17. Source/Sensor Capability

Sensor Inputs	RJ45 connector 2 Standard and 2 optional
Source Outputs	9 pin D connector 2 Standard and 2 optional fully isolated, 2.5, 5 or 10 volts @ 20 ma. 0.002% resolution

18. Oscillator Capability

Oscillator Input	BNC, In a standard installation it is connected to a 6 inch coaxial cable, but the total cable length from crystal head to oscillator must be between 24 to 48 inches. Please contact the factory for options when the length is outside of this range.
Oscillator Output	RJ45 connector connects to the 862 via supplied 25 foot RJ45 shielded cable. Other lengths are available.

19. Sensor Parameters

Number of Crystals	1 to 8
Shutter Relay Type	Normally open, normally closed, dual, or none.
Position Control	Manual, direct, Binary 1=00000, Binary 1=00001, or individual.
Position Drive	Up, down, single step
Feedback Type	Binary 1=00000, Binary 1=00001, in position, or no feedback.
Rotator Delay	0 to 99 sec

20. Source Parameters

Number of Pockets	1 to 30
Shutter Relay Type	Normally open, normally closed, or none.
Shutter Delay	0.0 to 9.9 sec
Pocket Control	Manual, direct, Binary 1=00000, Binary 1=00001, or individual.
Drive	Up, down
Feedback Type	Binary 1=00000, Binary 1=00001, in position, or no feedback.
Feedback Pause	0 to 10 sec
Rotator Delay	0 to 99 sec
Source Voltage	2.5, 5, 10 volts
Sweep Control	None, Binary 1=00000, Binary 1=00001, Individual
Number of Sweep Patterns*	0-63
Sweep Feedback Type*	No Feedback, Ready
Sweep Delay*	0 to 99 sec

*Only shown when Sweep Control enabled

21. DAC

Rate Output	Disabled, 2-Digit, 3-Digit
Thickness Output	Disabled, 2-Digit, 3-Digit, Target Thickness

22. Utility Parameters

Crystal Frequency	5 or 6 MHz
Simulate Mode	On/Off

Interface Address	1 to 32
Ethernet Configuration	Static, DHCP
IP Address (Static only)	XXX.XXX.XXX
Subnet Mask (Static only)	xxx.xxx.xxx.xxx (Default 255.255.255.0)
Attention Volume	0 to 10
Alert Volume	0 to 10
Alarm Volume	0 to 10
Touch Volume	0 to 10
Error Beep Volume	0 to 10
Pause on Layer Complete	On/Off
Data Points/Minute	30 to 600 PPM
Confirm Saves	Enabled, Disabled
Input Hold Time	0 to 5 sec.
RS232 Use CTS	On, Off
RS232 Baud	9600, 19200, 38400, 57600, 115200
Date	MM/DD/YY
Time	0 to 23:59

23. Display Parameters

VNC Display	On/Off
Brightness	Low, Medium, High
Screen Saver	Off, 5 min, 15min, 1hr, 4 hr
Time To Go Display	Estimated State, Estimated Layer, Elapsed Process, Elapsed Layer, Elapsed State
Display Negatives	On/Off
Thickness Vs. Time Graph	Enabled, Disabled
Rate Vs. Time Graph	Enabled, Disabled
Rate Dev. Vs. Time Graph	Enabled, Disabled
Power Vs. Time Graph	Enabled, Disabled
Source/Sensor Status	Enabled, Disabled
I/O Status	Enabled, Disabled
Locale	English, Chinese
Extended Rate Precision	Enabled, Disabled
Show Clock Errors	Enabled, Disabled

2.5 FEATURES

The 862 controls the rate and thickness of thin film deposition by controlling the power supply emission current of a e-beam source power supply by monitoring a quartz crystal.

A simple front panel touch screen color LCD (liquid crystal display) and handheld is used to configure and run processes. The LCD display allows for easy visualization of operation. The LCD panel prompts the user through the various steps of a normal operation.

2.6 INTERFACES

24. Input Interface

D-Sub 25 male connector or 37 pin	
Refer to chapter 3 for details	
8 to 32 – Inputs are contact closure to reference.	
50 ms max	
8 to 32 – Relay; 50V maximum compliant	
50 ms max	

3 INSTALLATION

3.1 UNPACKING

- 1. Visually inspect the transport packaging for signs of external damage
- 2. Unpack the 862 and put the packaging material aside

Note: Keep the packaging material for later use. The 862 must be stored

and transported in the original packaging material only.

- 3. Examine the 862 for completeness
- 4. Visually inspect the 862 for signs of damage

Damaged product.

Putting a damaged product into operation can be extremely dangerous.

Never attempt to put a damaged product into operation. Secure the damaged product from unintended operation. Send a damage report to the haulage company or the insurer.

3.2 MECHANICAL INSTALLATION

The 862 is intended for rack mounting. For maximum operating ease it should be mounted at approximately eye level. If the 862 is mounted in a rack containing other heat generating equipment, care should be taken that there is adequate ventilation to assure that the ambient temperature does not exceed the 862's ambient temperature rating.

862 can be used in the following ways: as a bench top device, mounted in a control panel or mounted in a 19 "rack. In each case, consider the following important safety information:

The temperature of the environment. Exceeding the allowable temperature of the device may damage the unit.

Make sure that the maximum permissible ambient temperature is not exceeded, and the air can circulate freely through the ventilation slots. Do not expose the device to direct sunlight.

25. Required components

The following is the minimum list of components required for setting up the 862 for safe operation.

- Electron beam source or other evaporation source and power supply in working order.
- Vacuum system.
- 19-inch rack with 90-264VAC, 47-63 Hz power to house the controller.
- Cable from ground on chamber to ground stud on 862 controller.

3.3 INSTALLATION

The Electron Beam source (EB source) 862 is designed to be mounted in a standard 19-inch electronic instrument cabinet. Other suitable places on a vacuum system may be used. The installation procedures are described below.

26. Rack Installation

The 862 is designed for installation into a rack according to DIN 41 494 (19", 3 HU).

Ambient temperature.

Exceeding the maximum permitted ambient temperature may damage the device.

Make sure that the maximum permitted ambient temperature is not exceeded. Do not expose the device to direct sunlight.

Protection class of the rack.

If the product is installed in a rack, it is likely to lower the protection class of the rack (protection from foreign bodies and water) e.g. according to the EN 60204-1 regulations for switching cabinets.

Take appropriate measures to restore the required protection class of the rack.

3.4 CONTROLLER CONNECTING

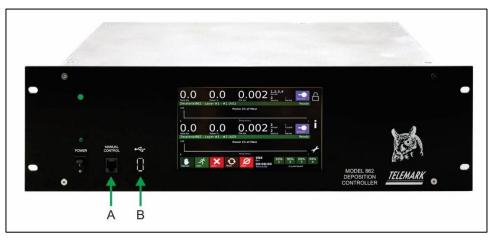


Figure 3-1, Front Panel Connection

27. Front Panel

A – **Manual Power Handheld**, The Remote Power Handset is plugged into the front panel and is used to control a power supply power setting and has an abort button.

The Handheld can be used when needed and removed when not needed.

B – **USB**, Type A, the USB is used to connect a USB drive to backup and restore settings and to update 862 software.

Figure 3-2, 862 Manual Power Handheld

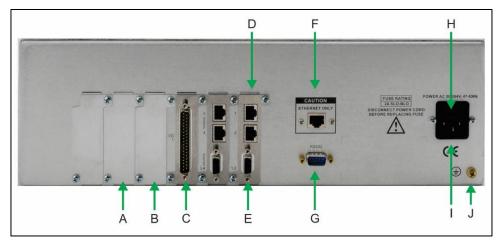


Figure 3-3, Rear panel 862 Controller

- A **25 pin input card** (see chapter 3.4.7 for details)
- B 25 pin output card (see chapter 3.4.7 for details)
- C 37 pin input/output card (see chapter 3.4.7 for details)
- D Sensor Input (see chapter 3.4.7 for details)
- E Source Output (see chapter 3.4.7 for details)
- F Ethernet port (see chapter 3.4.3 for details)
- G RS232 port (see chapter 3.4.3 for details)
- H Fuses (see chapter 3.4.3 for details)

I – Main power socket IEC C13 (see chapter 3.4.3 for details)

J – Grounding screw (see chapter 3.4.4 for details)

Note: I/O slots 1-4 can have any combination of I/O cards, 25 pin input, 25 pin output, or 37 pin input/output.

The configuration of the available connections and photographs of cables is described in the following sections.

29. Mains Connection

The mains connection is designed for a mains cable which contains IEC 320 connector on the device side. A mains cable is supplied with the device. If the plug is not compatible with your wall socket, you should replace it with a suitable mains cable:

Three-conductor cable with protective ground

Conductor cross-section 3x1.5 mm² or larger

Figure 3-4, Three-conductor cable with protective ground (example)

Mains power.

Improperly grounded devices can be extremely dangerous in the event of a fault. Use three-wire mains or extension cables with protective ground only. Plug the mains cable into wall sockets with protective ground only.

1. Connect the appliance connector of the mains cord with the mains connection of the device

2. Connect the plug of the mains cable with the wall socket

Note:

If the device is installed in a switching cabinet, the mains power can be supplied via a switchable central power distributor.

30. Grounding

Grounding screw (Fig. 3-3, the reference J) should be used to connect the 862 with the main grounding system in which it operates. It is recommended to use a cable with a minimum section of 2.5 mm^2

If required, connect the vacuum system ground from the earthing screw using the protective conductor.

31. RS-232

The RS-232 connector is for connecting the 862 to a PLC or computer for remote operation and/or data collection, see chapter 8. **CTS and RTS are optional**.

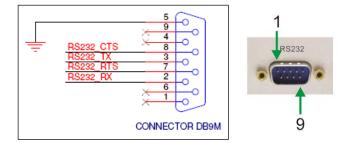


Figure 3-5, RS-232 Connection

32. Ethernet

The Ethernet connector is for connecting the 862 to a computer to run the touch screen remotely using VNC, see chapter 4.

The Ethernet interface allows to communication based on IEEE 802.2 standard with 100 MB/s speed.

Note: to achieve best performance and speed, the LAN cable has to be shielded and Cat-6 or higher. For a direct connection to a computer use a crossover cable. For connection to a network hub or switch use a non-crossover cable.

DO NOT PLUG THE CABLE FROM THE OSCILLATOR INTO THE ETHERNET CONNECTOR.



Figure 3-6, Ethernet Connection

33. Source-Sensor

Figure 3-7, Source-Sensor Card

The system interface with the sensor oscillator is a **Shielded** RJ45 cable that is supplied with the 862.

ONLY PLUG THE CABLE FROM THE OSILLATIOR INTO RJ45 CONNECTOR ON THE SOURCE-SENSOR CARD.

The control voltage output to control a HV power supply is via a 9-pin female D connector. See figure 3-8.

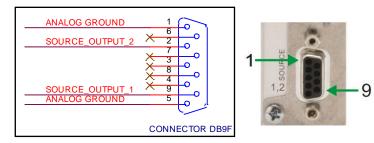


Figure 3-8, Source Connection

Pin	Signal	
Number	Source-Sensor Bd #1	Source-Sensor Bd #2
1	Source #2 Return	Source #4 Return
2	Source #2 Control Voltage	Source #4 Control Voltage
5	Source #1 Return	Source #3 Return
9	Source #1 Control Voltage	Source #3 Control Voltage

34. Discrete Input, 25 Pin

Figure 3-9, 25 Pin Input Card

The input card (part number 120-0571-1) with a 25-pin female D connector has 8 fully programmable inputs.

The card is **software configured** (see chapter 4) one of two ways:

- 1. **Passive** TTL level inputs activated by a short across input pins.
- 2. Active inputs activated by 12 to 24 volts AC/DC across the input pins.

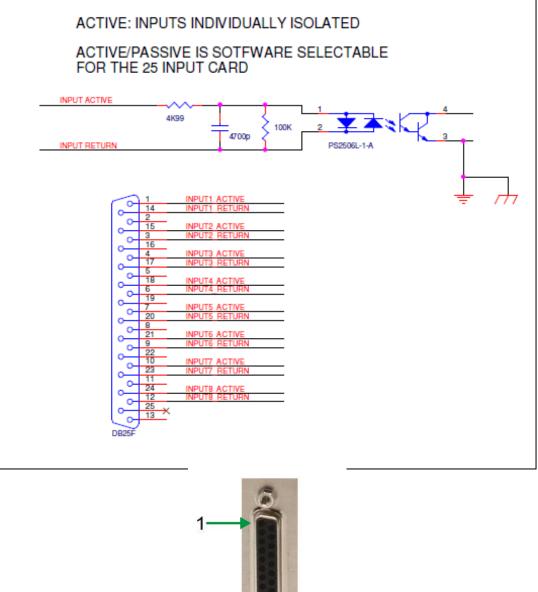
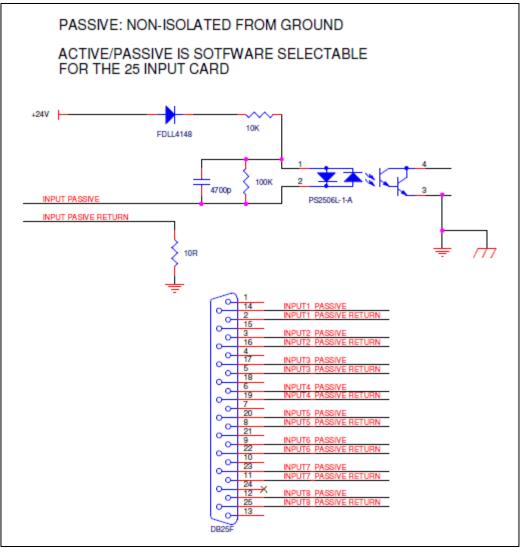



Figure 3-10, Active 25-Pin Input Card Connections

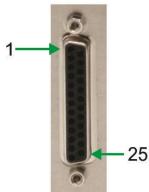


Figure 3-11, Passive 25-Pin Input Card Connections

35. Discrete Output, 25 Pin

Figure 3-12, 25-Pin Output Card

The output card (part number 120-0572-1) with a 25-pin male D connector has 8 fully programmable outputs that are made through SPST relays that are 50VDC max and 2A max. For each output connections can be made to the normally open (N.O.) and/or the normally closed (N.C.).

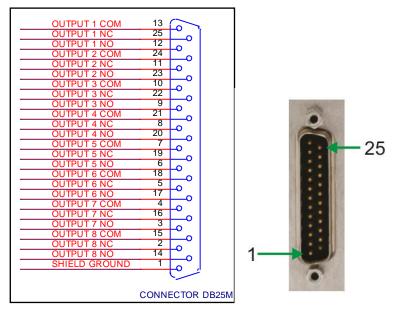
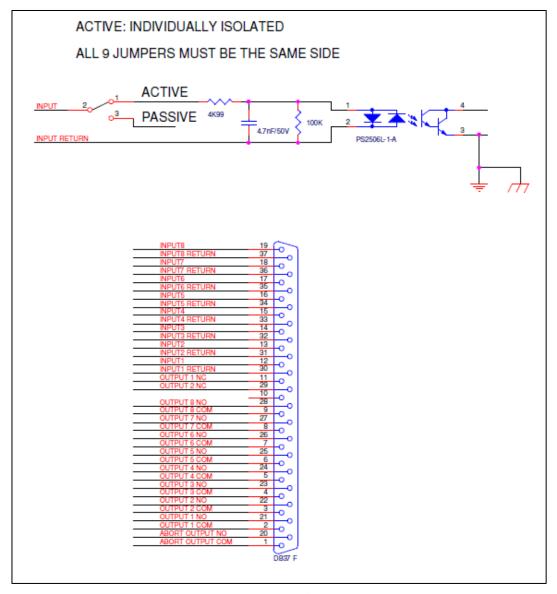


Figure 3-13, 25 Pin Output Card Connections

36. Input/Output, 37 Pin

Figure 3-14, 37-Pin Input/Output Card

The input/output card (part number 120-0564-1) with a 37-pin male D connector has 8 fully programmable inputs and 8 fully programmable outputs plus one dedicated "Abort" output.


The input type is **configured by jumpers on the PCB** (see figure 3-16) one of two ways:

- 1. **Passive** TTL level inputs activated by a short across input pins.
- 2. Active inputs activated by 12 to 24 volts AC/DC across the input pins.

The outputs are made through SPST relays that are 50VDC max and 2A max. Each output connection is made to the normally open (N.O.) and additionally for output 1 and 2 the normally closed (N.C.) may be used.

Figure 3-15, 37-Pin I/O Card, Active/Passive Jumpers

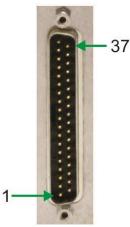


Figure 3-16, Active 37-Pin I/O Card Connections

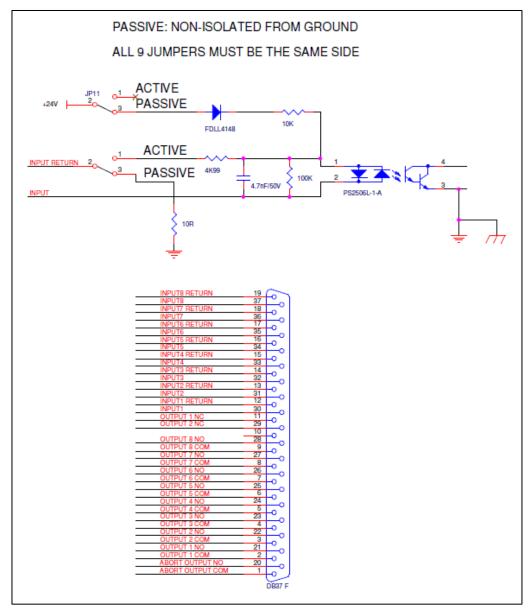


Figure 3-17, Passive 37-Pin I/O Card Connections

1

3.5 INSTALLING ADDITIONAL BOARDS

Option boards are most easily installed while the 862 is on the bench. Figure 3-3 shows the location of the various option boards. Also, they are clearly marked on the rear panel.

All 862 ship from the factory with at least one source sensor board and at least one I/O board.

All Dual Source-Sensor boards are identical. A Source-Sensor board plugged into the second position will provide sensor inputs numbers 3 & 4, and source outputs numbers 3 & 4.

Discrete I/O boards come in three types:

Discrete Input, 25-pin D connector Discrete Outputs, 25-pin D connector Input/Output, 37-pin D connector PCB

The input-output configuration of these boards is defined by the position into which they are installed.

37. Source-Sensor Board

- 1. Unplug power.
- 2. Remove the chassis top cover.
- 3. Remove blank plate from the empty Source/Sensor slot on the rear panel.
- 4. Carefully slide in the new card and insert in the edge connector.
- 5. Tighten the two mounting screws.
- 6. Replace the chassis top cover and apply power to the controller.
- 7. The Sign On screen should acknowledge Source-Sensor card 2 is installed.

38. Discrete I/O Board

- 1. Unplug power.
- 2. Remove the chassis top cover.
- 3. Remove blank plate from an empty I/O slot on the rear panel.
- 4. Carefully slide in the new card and insert in the edge connector.
- 5. Tighten the two mounting screws.
- 6. Replace the chassis top cover and apply power to the controller.

7. The Sign On screen should acknowledge that Discrete I/O 2, 3 or 4 installed.

3.6 SENSOR HEAD INSTALLATION

The sensor head can be installed in any appropriate location in the vacuum chamber, preferably more than 10 inches from the evaporation source. The internal (vacuum) cable, supplied with a sensor kit, connects the sensor head to the electrical feedthrough, to which the oscillator is attached. The cable length from sensor head to feedthrough connection should be 30 inches. Shield the sensor cable in the most

TELEMARK Model 862 Deposition Controller Manual

expedient way possible to protect it from radiation heat released from the evaporation source or the substrate heater.

The water-cooling tube connects to the feedthrough by brazing or vacuum couplings. If necessary, both cable and water lines may be wrapped in aluminum foil to extend their useful life. Water cooling of the sensor head should always be provided during depositions.

Use a shutter to shield the sensor during initial soak periods to protect the crystal from any sputtering that may occur. If a small droplet of molten material hits the crystal, the crystal may be damaged, and oscillation may cease.

3.7 SENSOR OSCILLATOR

Figure 3-18, Oscillator and Cables

The sensor oscillator is designed to be used with industry standard 5 or 6 megahertz sensor crystals. The oscillator's characteristics enable it to obtain maximum life from the sensor crystal.

The oscillator is supplied with a 6-inch coaxial cable and a RJ45 shielded twisted pair 25-foot cable. The 6-inch cable interconnects the oscillator and the feedthrough. The 25-foot cable interconnects the oscillator and the 862. Cables of varying lengths are available upon request for replacing the 25-foot cable.

The standard 6-inch coaxial cable is fine for most installations, but the total cable length from crystal head to oscillator must be between 24 to 48 inches. Many UHV and multi crystal head installations will require a custom coaxial cable. Please contact the factory for custom cables. For installations where the crystal head to oscillator must be greater than 48 inches, the 861-0500-4 oscillator should be used.

CAUTION

Always use the cables supplied by Telemark to make the connections. Failure to make this connection correctly will create a mismatch in the impedance of the oscillator circuit.

3.8 OSCILLATOR TEST

To troubleshoot problems with the 862 sensing the crystal a button on the oscillator will produce a reference frequency of 5.5MHz.

The recessed button on the Crystal connector side of the oscillator can be depressed to produce the reference frequency of 5.5MHz. This will produce a frequency of 5.5MHz which can be observed on the 862 touchscreen display. By pressing the "i" on the righthand side of the screen the screen will cycle between the graphs, the I/O status and the Crystal Sensor status. Cycle thought to the Crystal Sensor screen. It should show a frequency of somewhere around 5.5MHz. If it does show a value near 5.5MHz then the oscillator and the 862 are working properly. If it shows "—" or much larger number than 5,500,000 then there must be something wrong with the cables or feedthrough between the oscillator and r sensor head or the crystal.

Note: This will only work with the 862 in 6Mhz mode. If you are using 5MHz crystals, go to Program – Setup – Utility – Crystal Frequency and temporarily change it to 6Mhz to use the reference frequency and then change back after you are done.

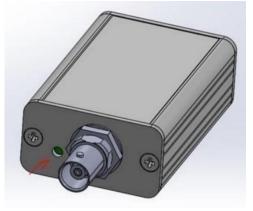


Figure 3-19, Oscillator Test button

Figure 3-20, Frequency on Sensor Status screen

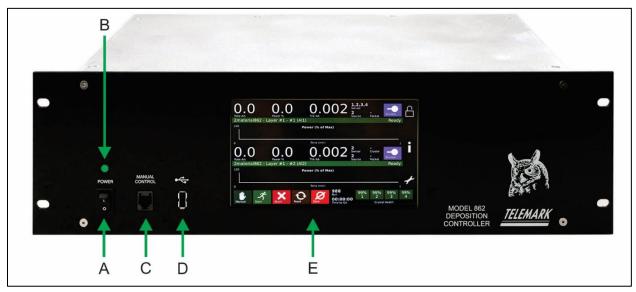
3.9 INSTRUMENTATION FEEDTHROUGH

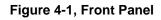
Telemark has a wide selection of O-Ring and CF flange feedthroughs available to pass the cooling water and coaxial signal into the chamber.

3.10 SENSOR CRYSTAL REPLACEMENT

The Telemark Sensor Head is especially designed for easy sensor crystal replacement and reliable operation. Removal and replacement of sensor crystals should be performed in a clean environment. An isolated clean work bench is recommended for crystal replacement. To prevent crystal contamination, use clean lab gloves or plastic tweezers when handling the crystal and keep the new crystals in a closed plastic case.

3.11 REMOTE CONTROL


Improper connection.


In the case of incorrect connection - in accordance with Figure 3-5, 3-8, 3-9, 3-11, 3-12, 3-14, 3-17 and 3-18 there is a danger of damage to the controller

4 USING THE 862

4.1 FRONT PANEL

Please refer to Fig. 4-1 for front panel details

- A **POWER SWITCH** (see chapter 4.1.1 for details)
- B Power On LED indicator (see chapter 4.1.2 for details)
- C HANDHELD (see chapter 4.1.3 for details)
- D **USB** (see chapter 4.1.4 for details)
- E LCD touch screen (see chapter 4.1.5 for details)

39. Main Power Switch

Switching On the power button (position 'I') activates the main power circuit of the device. Switching off the unit (position 'O' switch) completely cuts the power to the internal circuits - controller is safe to make rear panel connections.

Risk of the electric shock!

All connection to the devices may only be carried out with the unit is turned off - the main power switch in 'O' position.

Failure to do so may cause electric shock

40. Power On LED indicator

Green LED indicates the unit power is on.

41. Handheld

The handheld can be plugged in or unplug at any time.

42. USB

USB is used to transfer data

43. LCD Touchscreen

Interaction with the user takes place by means of a graphical LCD Touchscreen display. The screen can be set to turn off using the screen saver setting, The 862 is always operational if the power is on even if the screen is off. Touch the screen to wake screen up.

4.2 HANDHELD

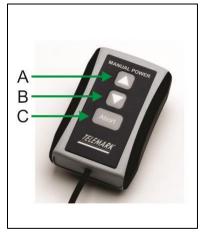


Figure 4-2, Manual Power Handheld

- A Power Increase
- B Power Decrease
- C Abort

4.3 TOUCH SCREEN OPERATION

44. Program Menu

Figure 4-3, Program Menu

Press the Program button to enter the programming mode from the main screen. Pressing one of the six buttons will get you to the next level.

- **Process** Process setup (see chapter 4)
- Material Material setup (see chapter 4)
- Results Process run history (see below)

Setup – System configuration setup (see chapter 4)

USB – USB menu for transferring files, it is only active when an USB drive is inserted in the 862 (see below)

Interface – Interface displays the sent and received data on the RS-232 port for debugging purposes (see chapter 8)

45. Results

Figure 4-4 shows the results screen. It can display the history of the last 16 process runs. Items displayed are: Run number, Name, Date and time and Status (Normal or Aborted).

0.0 Rate Å/s 2mate	0.0 Power % erial862 - L sults	0.000 Thk KÅ ayer #1	0.2 B Rate Å/s	O.O B Power %	0.003 B Thk KÅ	99% Health	00:00:00 Time Ready	
978	Ti			03/17/2	020 16:20	Aborted	\diamond	
979	Ti			03/17/2	020 16:21	Normal	\wedge	
980	Ti			03/17/2	020 16:21	Normal		Í
981	Ti			03/17/2	020 16:22	Normal	\checkmark	
982	Ti			03/17/2	020 16:22	Aborted	\otimes	
			C	Clear All				\leftarrow

Figure 4-4, Results Screen

46. USB

A standard USB drive (some drives larger than 32GB may not work) may be inserted in the front panel to back up and restore settings and data from the 862.

The USB button on the Program menu is inactive and darken if no USB drive is inserted. Once a USB drive is inserted into the front panel it will take several seconds before the USB drive is active. It will be active when the button is no longer darkened.

After selecting USB from the Program menu the USB menu is displayed.

Figure 4-5, USB Menu screen

System

Backing up of the system settings is done by touching the gray "Save System Data" button. To restore all the system settings from the USB drive select one of the listed system data sets. Note Restore will replace all the settings, materials and processes on the current system with the values from the USB drive.

0.0	O.O Vs Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time	പ
	t1324 - Laye						Ready	
י⊲∙ נ	ISB Drive Sy	stem Data						
	mysystem							
								\cup
			Savo S	ystem	Data			\leftarrow
			Saves	bystern	Dala			

Figure 4-6, USB System Backup/Restore

Process/Material

Process and material copying are for saving archives and to coping to other 862 systems individual processes and materials. The process and material screens are both laid out the same. The left column shows what is stored on the 862. The right column shows what is stored on the USB drive.

The 862 can also read material and process files created with the old DCM software from 360, 360C and 860 deposition controllers. 360C files on a USB drive are displayed with their extension .FL7 or .PR7. Note file names should be 12 characters in length or less.

To load old 360/860 material files (.FLM) or 360C material files (.FL7) place them in the 862\FILM folder on the USB drive (example d:\862\FILM).

If you want to load old 360/860 process files (.PRC) or 360C process files (.PR7) place them in the 862\PROCESS folder on the USB drive (example d:\862\PROCESS).

0.0 Rate Å/s	0.0 Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	Time	പ്പ
• Mate	24 - Laye rial	r#1					Ready	
		862				USB		
All				5	SiO2			
Al2				٦	Гі			(j)
AI12	2							
Ti			\sim	/				
SiO	2		\geq	,				\leftarrow

Figure 4-7, USB Process/Material Backup/Restore

Touch item on the 862 column to copy it to the USB drive.

)		0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time	Ц
	at <mark>1324 - Lay</mark> e JSB Drive Pro						Ready	
91.1	JSB Drive Pro	ocesses						
		862				USB		
	1material				1111			
	2material	2Mat132	24			_		(\mathbf{i})
		Conv	to USB -					•
	2Mat1324	COPy	10 050 -			`		
	-		\sim					
	т							
	1111		\sim	,				/
	1111		\sim					\sim

Figure 4-8, Copy 862 System Data to USB

Touch an item on the USB column to copy it to the 862 or delete it from the USB drive.

Figure 4-9, Copy System Data from USB to 862

Run Data

Pressing this button will save a text file with the last 16 process runs to the USB drive. It will be saved with a file name with the current time and date in the folder \862\results\. The format is shown below, fields are separated by commas.

Run St Number	Status Start Date Time	Stop Date Time	Data Points/Min	Start Layer	Stop Layer	Process Name
------------------	------------------------------	----------------------	--------------------	----------------	---------------	-----------------

Example:

4, Aborted, 09/18/2020 09:35:13, 09/18/2020 09:35:15, 600, 1, 1, Ex2Layer 5, Normal, 09/18/2020 09:43:19, 09/18/2020 09:47:51, 600, 1, 1, default

Software

The 862 system software can be updated via USB drive with software provided by Telemark. Select software version from the displayed list of available on the USB drive. The update should not affect the system settings, materials and processes, but a system back up should be done before the installation just in case. The 862 will ask for confirmation before installing the new software.

Eject

The eject button will close the USB drive. This is the safest thing to do before removing the USB drive from the 862 to prevent issues.

47. Right Side Bar Buttons

LOCK/UNLOCK BUTTON

The lock/unlock button allows the process, material, and system settings to be password protected with a single password.

The system can be either locked or unlock. In locked mode processes can be run and all settings can be viewed. In unlocked mode all settings can be changed. Pressing the lock icon brings up the Lock dialog window where the system can be locked/unlocked or the password can be changed. The default password is 0000.

0.0 Power % 324 - Laye gram	0.000 Thk KÅ r #1	O.O B Rate Å/s	O.O B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time Ready	
	Select O	-					(\mathbf{i})
		ige Passw	vord		←		
	Field	Service l	Jnlock		`_		
							\leftarrow

Figure 4-10, Password screen

SYSTEM INFORMATION BUTTON

Pressing the system information button will display the screen that shows what cards are installed in the 862 and the software version.

RETURN BUTTON

Pressing the return button will make the system go back to the previous screen.

48. Entering Alpha Characters

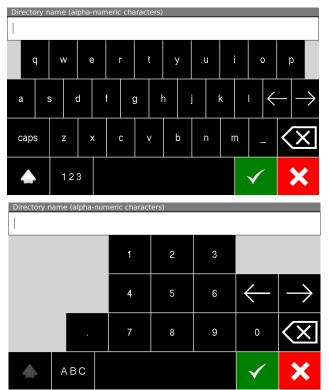


Figure 4-11, Keyboard

The on screen keyboard is provided to enter upper and lower case alpha characters and numbers.

49. Copying, Deleting and Moving

O.O Rate Å/s	O.C		0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0	0:00	Д
2Mat132	24 - L	_aye							Ready	
🕂 Proce	SS									
	1	1m	aterial							
	2	Pro	cess 1mate	erial						
	_		View / Edit							
	3		Rename							(\mathbf{i})
	4		Delete						\sim	
	5		Сору				/			
	6		Change Nu	ımber			<u> </u>		\geq	
				Ad	d Proces	s				\bigcirc

Figure 4-12, Copying and Deleting

A "process" is defined by one or more "layers", and a layer requires a "material" and a thickness definition. The 862 has the capability of copying and deleting processes and materials. When copying, the new material/process is placed at the end of the list. Change Number menu button can be used to move a material/process to any empty number.

5 CONFIGURATION

5.1 GETTING STARTED



Figure 5-1, System Setup Menu screen

Once the 862 hardware is installed, the system needs to be programed for the desired process. The preferred order of programing is:

- 1. Setup Display
- 2. Setup Utility
- 3. Setup Source
- 4. Setup Sensor
- 5. Setup Inputs
- 6. Sensor Profile (optional)
- 7. Materials
- 8. Process
- 9. Setup Outputs
- 10. Setup Actions

See the Specifications chapter for a list of the possible options for each setting. All settings should be reviewed, of particular note are:

Crystal frequency (5.0 or 6.0 MHz)

Source power supply emission input signal (0 to 2.5, 0 to 5.0 or 0 to 10.0 volts).

Note, in defining sources and sensors the 862 will automatically create the inputs and outputs necessary to complete the interface based on the parameter settings. Therefore, once the source or sensor settings have been saved, the user should review the inputs and outputs noting the pin assignments so that the proper connections can be made. Also note that the I/O pin assignments can be changed if necessary in the program input and output screens.

The system will pop up an error if there are not enough inputs or outputs available for the source/sensor configuration when that configuration is saved. The source/sensor configuration must be fixed right away.

5.2 SETUP

Choosing the Edit System Setup option from the Main Menu screen will present the System Setup Menu options as shown in figure 5-2. These options allow for setting up the controller to interface with the vacuum system and are described below.

50. Display

Selecting Edit Display Setup will present the Display Setup screen.

0.0 Rate Å/s	O.O Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0 Time	0:00	പ്പ
2Mat1	324 - Laye blay	er #1						Ready	
		VNC	Display	Off					
		Bri	ghtness	Mediu	um				
		Scree	n Saver	Off					(j)
	Ti	me To Go	Display	Elaps	ed Layer			\checkmark	
	D)isplay Ne	gatives	Off				·	
۲	hicknes	s Vs. Time	e Graph	Enabl	ed			\forall	\leftarrow

Figure 5-2, Display Setup Screen

VNC Display (On/Off)

This parameter determents if the 862 screen is displayed remotely via VNC to a computer has a VNC viewer running. An Ethernet cable needs to be installed between the back of the 862 and network switch and a computer with VNC. The network needs to have a DHCP server to automatically supply the 862 with an IP address. VNC is a remote operation protocol. Telemark recommends TightVNC for Windows, but any VNC viewer on Windows, Apple, or Linux computer should work.

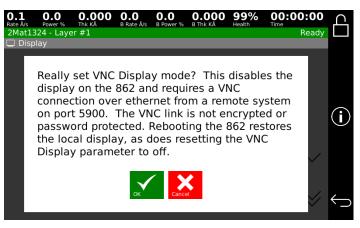


Figure 5-3, VNC Waning Screen

After saving Display Settings changes the 862 screen will turn greed and be similar to screen shown below. A beep will sound after 20 seconds; this will indicate that the VNC is ready.

Telemark Model 862 De Software Rev. 0.2.6	
IP Address 192	.168.1.3
Hardware Config	guration
Source/Sensor 1 and 2	Installed
Source/Sensor 3 and 4	Installed
I/O Card 1	I/O, 37 Pin
I/O Card 2	Input, 25 Pin
I/O Card 3	Not Installed
I/O Card 4	Not Installed

Figure 5-4, VNC Mode Screen

When the 862 is ready the VNC connection can be made. Mouse clicks can now control the 862.

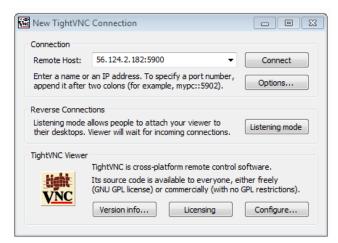


Figure 5-5, TightVNC Connection in Windows

The 862 will automatically revert to normal display after a reboot.

Brightness (Low, Medium, High)

This parameter controls the brightness of the screen.

Screen Saver (Off, 5 min, 15min, 1hr, 4 hr)

This parameter defines the time from last touch of the screen till the screen will be turned off. The 862 is still active when the screen is off. Screen will be turned on if it is touched or there is external input. The screen will stay on when a process is running regardless of then the screen was last touched.

Time To Go Display (Estimated State, Estimated Layer, Elapsed Process, Elapsed Layer, Elapsed State)

This parameter defines the displayed value of the Time To Go display on the front panel.

Display Negatives (On, Off)

This parameter defines whether the Rate displays a negative numbers. Negative numbers are displayed in Red. When off the smallest number displayed is 0.0.

Thickness Vs. Time Graph (Enabled, Disabled)

This parameter defines whether the thickness verses time graph is enabled as one of the status screens.

Rate Vs. Time Graph (Enabled, Disabled)

This parameter defines whether the rate verses time graph is enabled as one of the status screens.

Rate Dev. Vs. Time Graph (Enabled, Disabled)

This parameter defines whether the rate deviation verses time graph is enabled as one of the status screens.

Power Vs. Time Graph (Enabled, Disabled)

This parameter defines whether the power verses time graph is enabled as one of the status screens.

Source/Sensor Status (Enabled, Disabled)

This parameter defines whether the source/sensor status screen is enabled as one of the status screens.

I/O Status (Enabled, Disabled)

This parameter defines whether the I/O status screen is enabled as one of the status screens.

Note, if all six status screens are disabled, the Rate Vs. Time Graph will be displayed when the Status button is pressed.

Display Average (sec)

This parameter controls the averaging of the Rate and Thickness display on the touchscreen. The default is 3 seconds.

Locale (English, Chinese)

This parameter defines what language is displayed.

Extended Rate Precision (Enabled, Disabled)

This parameter controls the rate displayed precision. Enabled = 0.00, Disabled = 0.0

Show Clock Errors (Enabled, Disabled)

This parameter controls the display of clock "low battery" warning.

51. Inputs

O.	0.0 Å/s Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	9 Hei		00:00:00 Time	Д
	at1324 - Laye nputs	er #1						Ready	
Inp	out		Tru	ue Card	l - Input	Pin	Retur	n	
1	Source1 Bin	ary 0	Hi	gh 1	- 1	30	12		
2	Source1 Bin	ary 1	Hi	gh 1	2	31	13		i
3	Source1 Bin	ary 2	Hi	gh 1	3	32	14	\checkmark	
4			Hi	gh				\bowtie	
		Clea	r All	Co	onfigure	Bc	ards		\leftarrow

Figure 5-6, Program Inputs

The controller has 'logical' discrete inputs which are used when running a process, and 'physical' discrete inputs at the rear-panel connector pins which can be associated arbitrarily by the user with the logical inputs using the Edit Program Inputs function. By itself a user defined input has no effect, it can only be useful when its logical state is used as a condition for an internal action, or an external action represented by the state of a discrete output.

INPUT TYPE

The controller provides for a maximum of 32 logical inputs. The logical inputs can be associated with up to 8 physical inputs with the single I/O card provided with the basic controller, and with up to 32 physical inputs if the maximum of 4 I/O cards are installed.

The logical discrete inputs have two types:

- 1. Inputs that are named and assigned by the user
- 2. Inputs that are automatically defined by the controller, such as those required for source and sensor position feedback, and these cannot be changed by the user.

User defined logical input (1 to 32) can be given a 16-digit name, and can be associated with a physical input by identifying the I/O card (1 to 4) and connector pin number (each

of which also has a separate pin for the signal return which is displayed to the right of the Pin#). The input's true level can also be defined for each input. An input defined as High true will be true when the input's voltage is at or above the high level for the particular I/O card installed.

When the controller defines inputs, it selects the blank names remaining in the logical input list and assigns them in sequence to the internally generated functions. For this reason, it is important that unused inputs are left blank, and that there are sufficient inputs for all required functions.

PASSIVE/ACTIVE

Input cards can be set to use Passive or Active inputs. For the 37 pin I/O card go to chapter to see the hardware jumpers setting. For the 25 Input card press the "Configure Boards" button on the Input screen to get to the screen shown in figure 5-7, where passive mode can be set On or Off for each board installed.

0.0 Power % 24 - Laye igure Inpu		O . O B Rate Å/s	O.O B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time Ready	
	Card 2	Passive	Mode	Off			í
							\leftarrow

Figure 5-7, 25 pin Card, Passive/Active Setting

Passive inputs have TTL level (0 to 5 volt DC) inputs. The Passive inputs are pulled up to 5 volts internally through a resistor and are set true, assuming the input's True level is set to Low, by shorting the input pins together.

Active inputs have 12 to 24 volt DC inputs. The Active inputs are set true, assuming the input's true level is set to High, by supplying 12 to 24 volt AC or DC across the input pins.

52. Outputs

		0.000 Thk KÅ er #1	0.0 B Rate Å/s	0.0 B Power %	0.00 B Thk KÅ	0 99% Health	00:00:00 Time Ready	
Ou	tput		Card	- Outpu	t N.O.M	I.C. Return		
1	Source1 Sh	nutter		1 - 3	23	4		
2	Source2 Sh	nutter		1 - 2	22 2	9 3		i
3							\checkmark	
4							\geq	
			С	lear All				\leftarrow

Figure 5-8, Output screen

The controller has "logical" discrete outputs which are used when running a process, and "physical" discrete outputs which can be associated arbitrarily by the user with the logical outputs using the Program Outputs function. Each physical discrete output is in the form of a pair of relay contacts assigned to dedicated pins on a controller backpanel connector, and these contacts will close when a the logical discrete output associated with the physical output satisfies a set of conditions defined by the user

The controller provides for a maximum of 32 logical outputs. The logical outputs can be associated with up to 8 physical outputs with the single I/O card provided with the basic controller, and with up to 32 physical outputs if the maximum of 4 I/O cards are installed. Additionally, 37 pin I/O card has a relay output which is dedicated to the Abort function.

A logical output (01 to 32) can be given a 16-digit name and can be associated with a physical output by identifying the I/O card (1 to 32) and connector pin number.

OUTPUT TYPE

The logical discrete outputs have two types:

- 1. Outputs that are named and assigned by the user
- Outputs that are automatically defined by the controller, such as those required for source and sensor rotator controls, and these cannot be changed by the user. These internally defined outputs are indicated by a condition string labeled "Internally Defined"

When the controller defines outputs, it selects the blank names remaining in the logical output list and assigns them in sequence to the internally generated functions. For this reason, it is important that unused outputs are left blank, and that there are sufficient outputs for all required functions. Outputs that are internally defined are discussed further in the source/sensor setup sections.

Two screens are required to program the Discrete outputs. The first screen provides for selecting the output to be programmed, while the second screen provides for the actual programming, including the output name.

Selecting Program Outputs from the System Setup menu will present the Select Output screen. Touching an Output from this screen will provide access to the Output Name, Card#, Pin# and Condition string edit fields. A 12-digit name can be assigned to the logical input.

0.0 0.0 Rate Å/s Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0	0:00	൧
2Mat1324 - Lay	er #1						Ready	
Output #2								
Name	Source2	2 Shutte	er					
Card	1							
								\bigcirc
Dine	Card Ou		Dim = 22	20 6 2				\cup
PINS								
Conditions	Internal	ly Defir	ned					
		_		_				,
		C	lear Al					\bigcirc

Figure 5-9, Program Output Screen

The output condition string is a logical statement that determines the state of the output. The output relay is closed when the condition string is evaluated as true. Otherwise, the relay is open

ENTERING A CONDITION STRING

A condition string comprises one or more individual conditions linked together by the logical operators ! NOT, & AND, | OR and parentheses (). Conditions are chosen from a list. To enter a condition string correctly you must follow these rules:

There must be an equal number of closed and open parentheses. Parentheses most contain valid condition strings and may not be empty.

All conditions must be separated by either the & or the | operator.

Condition strings cannot begin or end with an operator.

Rate A/s Pow tmp - Laye		B Rate Å	S B Power %	0.000 B Thk KÅ	99% O	e Ready	ß				
Output #6 Condition String State:Material Ready & Layer #:2											
Proc State	Mat State	State B	Event	Pocket	Pocket B	Crystal					
Sensor	Source	Process	Layer #	Material	Material B	Input	4				
()	! (Not)	& (And)	(Or)	<<		 C 				

Figure 5-10, Program Output Screen

To enter a condition string, touch the "Condition" field. Then select the desired conditions from the gray buttons at the bottom of the screen.

CONDITION TYPES

A. Process State (Proc State)

Process State conditions are evaluated true whenever the controller is in the respective state.

Durana Daraha
Process Ready
Start Process
Start Layer
Change Crystal
Change Pocket
Set Soak Sweep
Layer Ready
Rise and Hold
Set Dep. Sweep
Establish Rate
Shutter Delay
Deposit
Post-Deposit
Layer Complete
Process Complete
Process Resume

B. Material States (Mat State and State B)

Material State conditions are evaluated true whenever the controller is in the respective state. Note state B is only available when on a co-deposition layer. Controller States are:

Material Ready
Start Material
Change Pocket
Change Crystal
Set Soak Sweep
Ready for Rise
Soak Rise
Soak Hold
Set Predep. Sweep
Predeposit Rise
Predeposit Hold
Set Dep. Sweep
Establish Rate
Shutter Delay
Deposit 1

Rate Ramp 1
Deposit 2
Rate Ramp 2
Deposit 3
Rate Ramp 3
Deposit 4
Rate Ramp 4
Deposit 5
Set Feed Sweep
Ramp To Feed
Feed Hold
Ramp To Idle
Material Complete
Material Resume

i.

C. Events

Event conditions are evaluated true whenever the respective event is true. Controller Events are:

Abort
Halt
Hold
Time Power
Ready
In Process
Simulate
Time Setpoint
Last Layer
Crystal Failure
Crystal Marginal
Min Rate / Max Power
Max Rate / Min Power
Rate Est. Error
Source Fault
Sensor Fault
Rate Dev. Alarm
Max. Power Alert
Min Power Alert
Rate Dev. Atten.
Max Power Atten.
Min Power Atten.
Manual Power

Manual Power B					
Time Setpoint B					
Rate Est. Error B					
Max. Power Alert B					
Min Power Alert B					
Max Power Atten. B					
Min Power Atten. B					
Min Rate/Max Power B					
Max Rate/Min Power B					
Rate Dev. Atten. B					
Rate Dev. Alarm B					

D. Inputs

Input conditions are represented by the user defined programmable inputs. A condition is either true or false depending on the state of the input. Inputs are considered true when pulled to logic ground.

E. Process

The process condition is evaluated true whenever the selected process is the current process. Note Pocket B and Material B are only available when on a co-deposition layer.

Material	The material condition is evaluated true whenever the selected material is the current material.
Sensor (1-4)	The sensor condition is evaluated true whenever the current sensor equals the specified sensor.
Crystal (1-8)	The crystal condition is evaluated true whenever the current crystal equals the specified crystal.
Source (1-4)	The source condition is evaluated true whenever the current source equals the specified source.
Pocket (1-30)	The pocket condition is evaluated true whenever the current pocket equals the specified pocket.
Layer (1-999)	The layer condition is evaluated true whenever the current layer# equals the specified layer#.

53. Actions

The 862 provides for 16 internal user programmable actions. Internal actions are used to provide special functions at the true evaluation of a condition string. These functions may be such things as terminating a deposit on an input from an optical monitor. Or, sounding an alarm when certain events are true.

To program an action, first select the desired action from the list of 16 programmable actions displayed in the Actions screen.

TELEMARK Model 862 Deposition Controller Manual

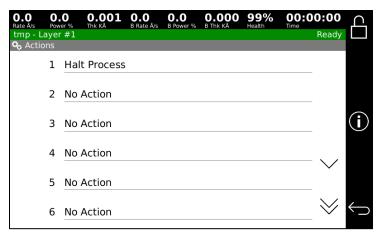


Figure 5-11, Actions List

Once you have selected the required action, press "Action Name."

	0.0	0.000 Thk KÅ	0.1 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:00	0:00	പ
2Mat1324		#1						Ready	
o Action							_		
Input:So	ource1	Binary	0 & Sc	ource:1	& Even	t:Time	Power		
									\bigcirc
Proc State	Mat S	tata Ct	ate B	Event	Pocket	Pocket		ystal	
PIOC State	Mats	state St	асе в	Evenit	FOCKEL	POCKEI	B Cr	ystai	
Sensor	Sou	rce Pro	ocess	Layer #	Material	Materia	al B In	put	\leftarrow
()	1	Not)	& (And)	(Or)	<<			`-)

Figure 5-12, Action Setup

In this screen select the predefined action you would like.

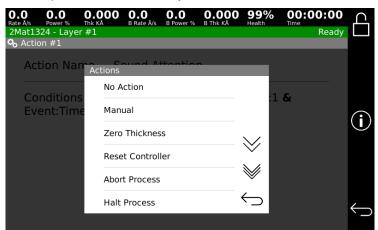


Figure 5-13, Action Selection

No Action	No action is taken. The default setting.
Manual	Functionally identical to pressing Manual button.
Zero Thinkness	Functionally identical to pressing Zero button.
Reset Controller	Functionally identical to pressing Reset button.
Abort Process	Functionally identical to pressing Abort button.
Halt Process	Halts the process, sets active source power to idle, and leaves all other source powers unchanged.
Terminate Deposit	Triggers the final thickness for the deposit state. Action is ignored if state is not a deposit state.
Hold In State	Holds controller in current state for the following states: ChangePocket, ChangeCrystal, SetSoakSweep, SoakRise, SoakHold, SetPredepositSweep, PredepositRise, PredepositHold, SetDepositionSweep, SetFeedSweep, RampToFeed, Feed, RampToldle.
Sound Attention	Triggers the attention sound and displays the "Attention Action" message in the State/Trouble field in the Parameter/Status display.
Sound Alert	Triggers the Alert sound and displays the "Alert Action" message in the State/Trouble field in the Parameter/Status display.
Sound Alarm	Triggers the Alarm sound and displays the message "Alarm Action" in the State/Trouble field of the Parameter/Status display.
Start Process	Trigger the start of the currently selected process. This action is ignored unless the controller is in the Process Ready state.
Select Process 1-10	Select process #1-10 as the next process to be started by the Start Process action described above.
Switch Crystals	Toggles between the primary and the backup sensor/crystal combination defined by the active material.

The following is a list of the predefined actions:

Once the action is selected then you need to establish when the action should take place by defining its condition string. This is covered in the earlier Output section.

54. Sensor

Selecting Edit Sensor Setup will present the Sensor Setup screen shown in figure 5-14. In this screen you define the sensor parameters that the controller needs to interface to the various types of sensors. Once the sensor setup is complete, the controller will create the necessary inputs and outputs needed to interface to the defined sensors. To define a sensor select the sensor by touching the desired sensor number. Once selected, the sensor is configured by selecting the appropriate parameters from the right half of the display:

TELEMARK

Model 862 Deposition Controller Manual

0.0 Rate Å/		Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time	പ്പ	0.0 Rate Å/s	0.0 Power %	0.000 Thk KÅ	O.O B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:00 Time		Ч
2Mat ∫ S€	1324 - Laye Insor	r#1					Ready		2Mat13	24 - Laye or #1	er #1					R	leady	
S	ensor #1									Number	of Crysta	als 1						
-										Shutter	Relay Ty	oe Nor	e					
S	ensor #2							í			Conti	rol Mai	nual					í
S	ensor #3										Dri	ve Up						
_										Fee	dback Tyj	be No	Feedba	ck				
S	ensor #4							\leftarrow		Rotator	Delay (se	c) <u>0</u>						\leftarrow

Figure 5-14, Sensor Setup Screen

Number of crystals (1 to 8)

This parameter defines the number of crystals available for that sensor head. For a single sensor head this would be set to one. For a dual sensor head with separate oscillators and sensor connections, this would still be set to one because there is only one crystal for each sensor input. And, for a multiple rotary type sensor head, this parameter would be set to the number of crystals that the sensor will hold.

Shutter Relay type (N.O., N.C., None, Dual)

This parameter defines the shutter relay type used to control the sensor shutter. The following four relay types are available:

N.O. - Relay is normally open and closes to close shutter. For this type, a "SensorN Shutter" output will be created to interface to the shutter actuator. **N.C.** - Relay is normally closed and opens to close shutter. For this type, a "SensorN Shutter" output will be created to interface to the shutter actuator. **None** - No sensor shutter output is created.

Dual - Select this type for a dual sensor head. For this type, a "Dual Snsr1&2 Shtr" output will be created to interface to the shutter actuator.

Control (Manual, Direct, Binary 1=00000, Binary=00001, Individual)

This parameter defines the type of crystal position control utilized. Manual, as it implies, means not under control of the 862. Under manual control, the 862 will stop the process upon the completion of the current layer when the next layer requires a different crystal position. A message prompting the operator with the number of the crystal required is displayed in the Parameter/Status window. Once the crystal has been changed, the process is resumed by pressing the Start button.

Binary 1=00000, Binary 1=00001, and Individual are used when control is through an external crystal rotation controller which accepts Binary inputs or Individual switch closures to select the crystal. The controller creates the number of outputs required to interface with the external controller and set the outputs as required to signal a crystal. Binary 1=00000 and Binary 1=00001 differ by when they start counting the number one. See table 4-1.

TELEMARK Model 862 Deposition Controller Manual

"Binary 1=00000" Number	"Binary 1=00001" Number	Binary Bit 4	Binary Bit 3	Binary Bit 2	Binary Bit 1	Binary Bit 0		
1	1*	0	0	0	0	0		
2	1*	0	0	0	0	1		
3	2	0	0	0	1	0		
4	3	0	0	0	1	1		
5	4	0	0	1	0	0		
6	5	0	0	1	0	1		
7	6	0	0	1	1	0		
8	7	0	0	1	1	1		
9	8	0	1	0	0	0		
9 10	9	0	1	0	0	1		
10	9 10	0	1	0	1	0		
12	11	0	1	0	1	1		
12	12	0	1	1	0	0		
13	12	0	1	1	0	1		
14	13	0	1	1	1	0		
16	15	0	1	1	1	1		
17	16	1	0	0	0	0		
18	17	1	0	0	0	1		
10	17	1	0	0	1	0		
20	10	1	0	0	1	1		
20	20	1	0	_	0	0		
21	20	1	0	1	0	1		
22	21	1	0	1	1	0		
23	22	1	0	1	1	1		
24	23	1	1	0	0	0		
25	24 25	1	1	0	0	1		
20	25	1	1	0	1	0		
27	20	1			1			
28	27	1	1	0	0	1 0		
		1	1		0	1		
30	29		-	1				
Not used	30	1	1	1	1	0		
Not used	Not used	1	1	1	1	1		

1 = CLOSED, 0 = OPEN

* Note in "Binary 1=00001" mode, 00001 and 00000 both equal one.

Table 4-1, Binary Table

Drive (Up, Down, Single Step)

When the Control type is Direct, this parameter defines the drive method or direction. For Up and Down drive types, the controller sets up one output to control a drive motor which is turned on until the rotator reaches the desired position. For Single Step drive type, the controller sets up one output which is singly pulsed for 1.5 seconds to actuate a solenoid to sequentially step the rotator to the desired position. The controller creates one or more of the following outputs depending on the type:

SensorN Drive Up and SensorN Drive Dn

For single step - "Input Hold Time" is added to the pulse off time for single step crystal rotator drive. (So it's 1 second on, (1 + Input Hold Time) seconds off. The "Input Hold Time" setting is in the Setup - Utility menu

Feedback Type (Individual, Binary 1=00000, Binary 1=00001, In Position, No Feedback)

This parameter defines the type of feedback for a multiple sensor head. The four feedback types available are as follows:

Individual - Individual position feedback. This feedback type uses one input for each crystal position in the sensor head.

Binary 1=00000, Binary 1=00001 - Binary Coded Decimal position feedback. This feedback type uses binary coding to indicate which crystal is in position. See table 4-1

IN POSITION - In position feedback. This feedback type uses one input. The input is normally false (open circuit) and should go true (closed to ground) when the desired crystal is in position.

NO FEEDBACK - No crystal position feedback is used.

Rotator Delay (0 to 99 seconds)

This parameter serves two different functions. If the feedback type is "None" (Not recommended). This parameter tells the controller how long to wait assuming the crystal is in position. If position feedback is provided, this parameter tells the controller how long it should wait for the crystal to reach its target position before it issues a Sensor Fault message.

55. Source

Selecting Edit Source Setup will present the Source Setup screen as shown in **Error! Reference source not found.**5-15. In this screen you select the source setup you wish to edit.

	Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0 Time	0:00 Ready		0.0 Rate Å/s 2Mat13 Sour	0.0 Power % 24 - Laye ce #1	0.000 _{Тhk кå} r #1	O.O B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0 Time	0:00 Ready	£
Source #1										Nu	umber of	Pockets	6					
										Sh	utter Re	ау Туре	N.O.					
Source #2								(j)		Shi	utter Del	ay (sec)	0.0					(j)
Source #3 / R	ate DAC										Pocket	Contro	Manu	al			\checkmark	
											Pock	et Drive	Up					
Source #4 / T	hickness D	AC						\leftarrow			Feedba	ick Type	Binar	y 1=000	00		\otimes	\leftarrow

Figure 5-15, Source Setup Screen

Once selected, the source is configured with the following parameters located on the right side of the display:

Source Function (Power, Recorder) (only for Source #3 and #4)

Power is for normal operation of an EB Source.

Recorder option make Source #3 output Power and Source #4 output Thickness with a 0-5VDC signal. See DAC section for details.

Number of Pockets (1 to 30)

This parameter defines the number of pockets, or crucibles, available for the source. The default value is 1 for a single pocket source.

Shutter Relay Type (N.O., N.C., None)

This parameter defines the shutter relay type used to control the source shutter. The following three relay types are available:

N.O. - Relay is normally open and closes to close shutter. For this type, a "SourceN Shutter" output will be created to interface to the shutter actuator.
N.C. - Relay is normally closed and opens to close shutter. For this type, a "SourceN Shutter" output will be created to interface to the shutter actuator.
None - No source shutter output is created.

Shutter Delay (sec) (0.0 to 9.9 seconds)

This parameter defines the amount of time allowed for the source shutter to open, after which the process will timeout if the necessary feedback has not been set. During Shutter Delay the power setting of "Predeposit Hold" or the final power setting in "Rate Establish" is held as a constant.

Pocket Control (Manual, Direct, Binary 1=00000, Binary=00001, Individual)

This parameter defines the type of pocket control utilized. Manual, as it implies, means not under control of the 862. Under manual control, the 862 will stop the process upon the completion of the current layer when the next layer requires a different pocket. A message prompting the operator with the material required is displayed in the Parameter/Status window. Once the pocket has been changed, the process is resumed by pressing the Start button. See table 4-1

Binary 1=00000, Binary 1=00001, and Individual are used when control is through an external pocket rotation controller which accepts Binary inputs or Individual switch closures to select the pocket. The controller creates the number of outputs required to interface with the external controller and sets the outputs as required to signal a pocket change. Binary 1=00000 and Binary 1=00001 differ by when they start counting the number one. See table 4-1.

The controller sets up one or two outputs, one for each available direction, to drive a motor or solenoid. Direct is used when the actuating device is driven directly. In this case the controller setups up one or two outputs, one for each available direction, to drive a motor or solenoid.

Pocket Drive (Up, Down)

When the Control type is Direct, this parameter defines the drive method or direction. For Up and Down drive types, the controller sets up one output to control a drive motor which is turned on until the rotator reaches the desired position.

The controller creates one or more of the following outputs depending on the type:

Drive Up Drive Down

Feedback Type (Individual, Binary 1=00000, Binary 1=00001, In Position, No Feedback)

This parameter defines the type of feedback for a multiple pocket source. The five feedback types available are as follows:

Individual - Individual position feedback. This feedback type uses one input for each pocket position in the source.

Binary 1=00000, Binary 1=00001 - Binary position feedback. This feedback type uses binary coding to indicate the pocket position. See table 4-1.

In Position - In position feedback. This feedback type uses one input. The input is normally false (open circuit) and should go true (closed to ground) when a pocket is in position.

No Feedback - No pocket position feedback is used.

Feedback Pause (0 to 10 seconds)

This parameter may be needed for systems that slow down the "In Position" signaling between the indexer and the 862 (such as when the signal goes through an intermediate process controller). This pause defaults to 1 sec.

Pocket Delay (0 to 99 seconds)

This parameter serves two different functions. If the feedback type is "None" (Not recommended, see cautions in the Installation section.) this parameter tells the controller how long to wait, on the assumption the pocket will get into position. If position feedback is provided, this parameter tells the controller how long it should wait for the pocket to reach its target position before it issues a Source Fault message.

Source Voltage (2.5V, 5.0V, 10V)

This parameter sets the upper voltage range for the source control output. The lower voltage range is always 0. For example, selecting 10 for this parameter sets the source control voltage range from 0 to 10 volts.

Sweep Control (None, Binary 1=00000, Binary 1=00001, Individual)

This parameter defines the type of XY sweep control utilized. None means not under control of the 862. Binary 1=00000, Binary 1=00001, and Individual are used when a XY sweep pattern is selected via the settings in the material setup. The signals are sent to a XY sweep which accepts Binary inputs or which uses Individual switch closures to select the sweep pattern. Binary 1=00000 and Binary 1=00001 differ by where they start counting the number one. See table 4-1

Number of Sweep Patterns (0-63) (not shown if Sweep Control is none)

This number is used to determine the number of 862 outputs that are generated and sets the maximum allowed sweep number.

Sweep Feedback Type (No Feedback, Ready) (not shown if Sweep Control is none)

This parameter determines if there is no feedback or a sweep ready signal.

Sweep Delay (0 to 99 sec) (not shown if Sweep Control is none)

This parameter tells the controller how long to wait for the XY sweep get ready. If sweep feedback is provided, this parameter tells the controller how long it should wait for the sweep to get ready before it issues a sweep Fault message.

56. DAC

When Source #3 and #4 are in Recorder mode the following options are available.

Source #3 or Rate DAC: Disabled, 2-Digit, 3-Digit

Source #4 or Thickness DAC: Disabled, 2-Digit, 3-Digit, Target Thickness

0.0 Rate Å/s	0.0 Power %	0.000 Thk KÅ	0.1 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	Time	/
	8 <mark>24 - L</mark> aye rce #3 / R						Rea	ady
			unction	Recor	der			
		Ra	ate DAC	2-Dig	it			
								í
								\leftarrow

Figure 5-16, DAC Setup screen

The 862 has one rate and one thickness DAC output, which are suitable fort recording with a strip chart recorder or other recording device. Each DAC converts the last two or three digits of the appropriate display to a 0 to 5 volt analog signal. When 5 volts is reached the voltage drops back to 0 then increases from there. See graphical explanation below.

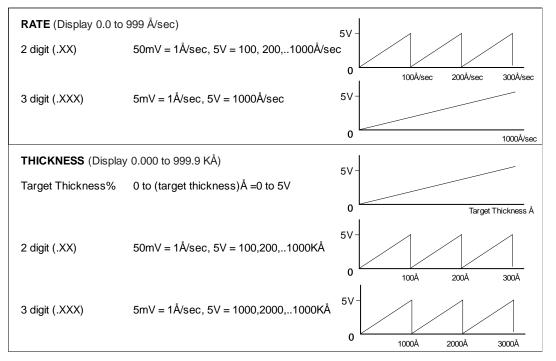


Figure 5-17, DAC Rate and Thickness

57. Utility

Selecting the Edit Utility Setup from the Edit System Setup menu will present the Utility Setup screen. Figure 5-18 shows the first page of this screen. All parameters are described below.

0.0 Rate Å/s	O.O Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0	0:00	ட
	1324 - Laye ility	er #1						Ready	
	,	Frequenc	y (MHz)	6.0					
		Simulat	e Mode	Off					
	li	nterface	Address	1					(j)
	Etherr	net Config	guration	Static	:			\checkmark	
		IP /	Address	10.0.	0.128				
		Subn	et Mask	255.2	255.255.0)		\otimes	\leftarrow

Figure 5-18, Utility Setup screen

Crystal Frequency (5.0 or 6.0 MHz)

This parameter determines the uncoated crystal frequency type for all sensor inputs. The default setting is 6.0 MHz

Simulate Mode (On, Off)

This parameter enables or disables the Simulate mode of the controller. The Simulate mode is used for process testing and differs from the Normal mode only to the extent that the Thickness and Rate displays are derived from a simulated sensor input rather than the actual sensor. While in this mode, the simulated thickness build- up is directly proportional to the displayed power level and independent of actual thickness on the sensor. The Simulate mode allows the total deposit process to be simulated. It also allows the tooling factor, density and acoustic impedance calculations to be conveniently checked and altered at the end of the run, if necessary.

Interface Address (1-32)

This parameter sets the controller's computer interface address for the RS-232 interface.

Ethernet Configuration (Static, DHCP)

This parameter sets whether the controller's Ethernet IP address is static or is assigned by a DHCP server.

IP Address (Static only, xxx.xxx.xxx)

This parameter fixes the 862 to a static Ethernet IP address, If used on a companywide network contact your IT department for a number to use so there is no chance of two devices having the same address.

Subnet Mask (Static only, xxx.xxx.xxx.xxx)

This parameter sets the 862 subnet mask. The subnet mask is used by the TCP/IP protocol to determine whether a host is on the local subnet or on a remote network. The default is 255.255.255.0

Attention Volume (0-10)

This parameter sets the volume of audio attention sound. Attention sounds indicate that the controller is waiting for an operator response or action before continuing the process. A setting of zero disables audio attention sound.

Alert Volume (0-10)

This parameter sets the volume of audio alert sound. Alert sounds indicate that a material alert level has been exceeded. A setting of zero disables audio alert sounds.

Alarm Volume (0-10)

This parameter sets the volume of audio alarm sound. Alarm sounds indicate that a material alarm level has been exceeded. A setting of zero disables audio alarm sounds.

Touch Volume (0-10)

This parameter sets the volume of when you touch the touch screen. A setting of zero disables touch sounds.

Error Beep Volume (0-10)

This parameter sets the volume of audio when the touch screen is pressed.

Pause On Layer Complete (On, Off)

This parameter determines whether the controller will pause between layers. If this parameter is set to Yes then the controller will stop on layer complete and wait for a Start key press from the operator. If this parameter is set to No then the controller will automatically increment to the next layer.

Data Points/Min (30 to 600 PPM)

This parameter sets the number of run-time data point sets per minute that will be written to the process log. The default is 600 data points/minute. During a process, data is logged automatically up to 10 data point sets per minute. This parameter is only visible when the data logging option is installed.

Confirm Saves (Enabled, Disabled)

This parameter sets whether the 862 asks for conformation to save changes when exiting material, process and system setup.

Input Hold Time (0-5sec)

This parameter sets the time which is the minimum amount of time an input should be held at true or false before its value is considered settled (valid).

RS232 Use CTS (On, Off)

This parameter defaults to "Off." This parameter is used for all RS232 interfaces. If set to "On," the 862 waits for the CTS line to be asserted before handling RS232 messages.

RS232 Baud (9600, 19200, 38400, 57600, 115200)

This parameter sets the RS232 Baud rate. 9600 Baud is recommended. The amount of information sent back and forth is very few bytes, so the baud rate is not going to make much difference. The faster the speed the more the possibility of signal error and the more the cable specifications matter. Particularly the longer the cable is the more this is a problem.

Date (01/01/00-12/31/99)

This parameter sets the system date in month/day/year format.

Time (00:00-23:59)

This parameter sets the system time. Time is entered in 24-hour format.

5.3 SENSOR PROFILE - OPTIONAL

A single sensor and back up can be configured in the material, but the optional sensor profile is can configure from 1 to 4 sensors. In the material setup a sensor profile is selected if used.

This parameter defines the sensor input number that will be used for this material, and cannot be greater than the number of sensor inputs fitted to the controller. The default setting is 1.

In the sensor profile each of the 1 to 4 sensors have the following parameters:

Primary (Yes, No)

This parameter defines if the sensor is used as a primary sensor.

Tooling Factor (10.0 to 499.9%)

This parameter is the tooling factor for this sensor. The Tooling Factor parameter is used to compensate for geometric factors in the deposition system which result in a difference between the deposition rate on the substrates and the rate on the sensing crystal. This parameter is entered in percent units and 100% corresponds to equal rates at the substrate and at the sensing crystal. To a first approximation the tooling factor can be calculated using the following equation:

$$Tooling\% = \left(\frac{dc}{ds}\right)^2 \cdot 100$$

where:

dc= Distance from source to crystal.

ds= Distance from source to substrate.

Empirical calibration of the tooling factor is described in Section 109.

Weight % (10.0 to 499.9%)

This parameter defines the percent weight relative to the other primary sensors. The weight adjusts how much effect the sensor has on the averaged rate with other sensors. If only one sensor is used, then the weight has no effect.

Crystal# (1 to 8)

This parameter defines the primary crystal used for this sensor. This parameter cannot be greater than the Number of Crystals parameter in the Sensor Setup screen. The default setting is 1.

Crystal Fail (Halt, Disable, Time Power, Disable Time Power, Switch)

This parameter defines the controller's action in the event of a crystal failure. The options are:

- 1. Halt To halt the process
- 2. Disable if the crystal fails then this sensor is no longer use in the rate/thickness calculation.
- 3. Time Power Finish the current layer on time-power
- 4. Disable Time Power Disables the sensor that fails unless it is the last sensor, in which case it goes to time power
- 5. Switch Switch to a backup crystal, halt if second crystal fails

Time power will only work if the 862 is in states Deposit 1,2,3,4, or 5 and average rate is between 50% and 150% of the target rate. Note when the 862 is in time-power it will be unable to execute any further rate ramps.

Backup Sensor (1 to 4)

This parameter defines the backup sensor input for the backup crystal. For a dual sensor head, this parameter is set to 2 assuming sensor #1 is the primary crystal. However, for six crystal sensor head, this parameter would be the same value as the Sensor# parameter and the Backup Crystal # parameter below would be set to two. This is because the six crystal sensor head uses one sensor input to measure any of its six crystals while the dual sensor head uses two sensor inputs to measure either crystal.

Backup Crystal (1 to 8)

This parameter defines the backup crystal number.

Note: there is no Backup Tooling Factor parameter. When the 862 switches to a backup sensor it uses tooling factor set in that sensor.

5.4 MATERIAL

From the Main Menu, selecting View/Edit Material will present the Select Material screen shown below.

Rate Å/s P	ower % Thk I	000 0.0 A B Rate A	O.O /s B Power %	0.000 B Thk KÅ	99% Health	00:00:00 Time		Rate Å/s Pov	•0 wer %	Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00: Time	00:00	ഺ
2Mat1324	- Layer #1 al					Ready		2Mat1324 · · Material		er #1						Ready	
1	Al1							1	AI1								
2	AI2							2	Ma	iterial Al1							
3	AI12						\bigcirc	З		View / Edit	t						
4							(j)			Rename							í
1 1	· <u>11</u>					\vee		4		Delete						\sim	
5	SiO2					、 ,		5		Сору				,			
6	Au					\sim		6		Change Nu	umber			<u> </u>		$_{-}$ $>$	
		Å	Add Mater	ial			\bigcirc				Ad	d Materi	al				\leftarrow

Figure 5-19, Select Material screen

58. Define A Material

Selecting a material for viewing and/or editing will present the screen which permits the material to be defined. In this screen, you define all of the material parameters for the selected material. The material parameters are described in detail below.

1. Material Name (A 12 character material name)

An existing material can be renamed from the menu choice "Rename" that is displayed when the material is selected.

Select "Add Material" button to add a new material. This will display a complete list of materials that are stored in the 862. The first item "New Material" will wait for a name to be input.

If a predefined material is chosen, the stored values for the density and acoustic impedance for that material are automatically entered into their respective parameters.

0.0 Rate Å/s	0.0 Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power	м В	.000 Thk KÅ	99% Health	00:0		പ്
	24 - Laye erial Al1	r #1							Ready	
		Thic	kness	(KÅ)	0.20	00				
		Use Se	nsor Pr	ofile	Disa	bled				
			Sens	or #	1					i
			Cryst	al #	1				\sim	
			Sourc	ce #	1					
			Pock	et #	1				\geq	\leftarrow

Figure 5-20, Define Material screen

2. Thickness (000.0 to 999.9 kA)

This parameter can be use in three different ways described below. The default for this parameter is 0.000 K ang.

- a. If a process layer has a thickness greater than 0.000 then the value in the material will be ignored.
- b. If the process layer has a thickness of 0.000 then value in the material will be used.
- c. When "Select Film" is used the material thickness is used as the stopping point.

Use Sensor Profile (Enabled, Disabled)

This parameter define if a Sensor Profile is used. If Enabled then the Sensor Profile parameter will show.

Sensor Profile (Sensor Profile Enabled)

When Sensor Profile is Enabled the parameter will allow the selection of a named sensor profile the has been made in the Sensor Profile

Sensor# (1 to 4) (Sensor Profile Disabled)

This parameter defines the sensor input number that will be used for this material, and cannot be greater than the number of sensor inputs fitted to the controller. The default setting is 1.

Crystal# (1 to 8) (Sensor Profile Disabled)

This parameter defines the primary crystal used to monitor this material. This parameter cannot be greater than the Number of Crystals parameter in the Sensor Setup screen. The default setting is 1.

Source# (1 to 4)

This parameter defines the source output number that will be used for this material, and cannot be greater than the number of source outputs fitted to the controller. The default setting is 1.

Pocket# (1 to 30)

This parameter defines the pocket number that contains this material. This parameter cannot be greater than the Number of Pockets parameter in the Source Setup screen. The default setting is 1.

Material Density (0.50 to 99.99 gm/cm³)

This parameter provides the material density so that the controller can calculate and display the physical film thickness. If the film density is known, it should be used. A list of the more commonly used film densities is available in pdf form on the supplied CD. As a first approximation, bulk material density can be used in programming. Empirical calibration of this parameter is described in chapter 6.

Acoustic Impedance (0.08 to 90 gm/cm²/sec)

This parameter is the acoustic impedance of the material. The acoustic impedance of the deposited film is required by the 862 in order to accurately establish the sensor scale factor when the sensor crystal is heavily loaded. If the acoustic impedance of the film material is known, it can be entered directly in units of 105 gm/cm² sec. In most cases the acoustic impedance of the bulk material can be used and can be obtained from The Handbook of Physics or other source of acoustic data. The shear wave impedance should be used. The shear wave acoustic impedance can be calculated from the shear modulus or the shear wave velocity and the density by using the following equation:

$$AI = \rho \cdot C = \sqrt{\rho \cdot G}$$

Where:

AI= Acoustic Impedance

 ρ = Density (gm/cm³)

C= Transverse (shear) wave velocity (cm/sec)

G= Shear Modulus (dynes/cm²).

A list of the acoustic impedance and density of the more commonly deposited materials is is available in pdf form on the supplied CD and a technique for empirically determining this parameter is presented in chapter 6.

In many cases and particularly if the sensor crystal is not heavily loaded, sufficient accuracy can be achieved by using the acoustic impedance of quartz which is 8.83 X 10^5 gm/cm² sec.

Tooling Factor (10.0 to 499.9%) (Sensor Profile Disabled)

This parameter is the tooling factor for the primary sensor. The Tooling Factor parameter is used to compensate for geometric factors in the deposition system which result in a difference between the deposition rate on the substrates and the rate on the sensing crystal. This parameter is entered in percent units and 100% corresponds to equal rates at the substrate and at the sensing crystal. To a first approximation the tooling factor can be calculated using the following equation:

$$Tooling\% = \left(\frac{dc}{ds}\right)^2 \cdot 100$$

where:

dc= Distance from source to crystal.

ds= Distance from source to substrate.

Empirical calibration of the tooling factor is described in Section 109.

Proportional Gain (0 to 9999)

This parameter is the proportional gain factor for the source power control loop.

Integral Time constant (0 to 99.9 sec)

This parameter is the system time constant.

Derivative Time constant (0 to 99.9 sec)

This parameter is the system dead time.

Rise To Soak Time (0 to 9:59:59)

This parameter sets the time interval for the source power to ramp up from zero to the power level set in Soak Power parameter. It should be long enough for the material to have time to reach equilibrium temperature without spitting, or in the case of evaporation sources, protected from unnecessary thermal shock.

Soak Power (0.0-99.9%)

This parameter defines the source power level during the Soak state. The Soak Power should be established at a level which will assure that the source material is properly outgassed and prepared for subsequent deposition.

Soak Time (0 to 9:59:59)

The Soak Time parameter defines the time duration of the Soak state. It is used in conjunction with the Soak Power to allow the material to fully outgas.

Soak Sweep Pattern (0 to 63)

This parameter selects a XY sweep pattern for the soak state. Once a pattern is selected that pattern will continue to be output till a new pattern from 1 to 63 is selected. When "0" is selected, no change in pattern output is made. A XY Sweep is configured in the source setup.

Rise To Predeposit (0 to 9:59:59)

This parameter sets the time interval for the source power to ramp from Soak Power level to the Predeposit Power.

Predeposit Power (0.0 to 99.9%)

This parameter defines the source power level during the Predeposit state. This should be set as close as possible to the power level required to reach the desired deposition rate. The Manual mode can be used to conveniently determine the Soak and Predeposit power levels of a particular material.

Predeposit Time (0 to 9:59:59)

This parameter defines the time duration of the Predeposit state. The Predeposit Time should be established at a value which allows the source material to be brought to the deposit temperature level and stabilized in an orderly manner. Since evaporation will normally occur at the Predeposit power level, too long a Predeposit Time will result in unnecessary buildup of material on the shutter and unnecessary material loss.

Predeposit Sweep Pattern (0 to 63)

This parameter selects a XY sweep pattern for the Predeposit state. Once a pattern is selected that pattern will continue to be output till a new pattern from 1 to 63 is selected. When "0" is selected, no change in pattern output is made. A XY Sweep is configured in the source setup.

Rate Establish Time (0, 6 to 5999 seconds)

This parameter defines the time limit of the rate establish state. The rate establish state occurs before the deposit state and is used to establish the correct source power before the source shutter is opened. In the rate establish state the crystal shutter is opened, the source shutter is closed, and the controller is controlling source power to achieve the programmed rate within the Rate Establish Error% for a period of 5 seconds. Once the rate has been held within limit for 5 seconds, the controller will go into the deposit state. If the rate error cannot be held within the allowed percentage error for 5 seconds, then the controller will display a Rate Establish Error and the process will be halted.

For the rate establish function to work, the sensor must be located somewhere in the vapor stream of the source while the source shutter is closed. The default setting for this parameter is 0 which disables this function.

Rate Establish Err% (0 to 99%)

This parameter is only shown if Rate Establish Time is 6 to 5999 seconds. It sets a maximum limit for the rate establish error, which must not be exceeded for a five-second period during the rate establish state, in order for the controller to enter the deposit state.

Deposit Rate #1 (0.0 to 999.9 Å/sec)

This parameter defines the first deposition rate.

Rate Ramp (Disabled, Thickness (kA), Thickness (%))

This parameter defines the rate ramp type. If disabled the Deposition ramps will not show, if Thickness (kA) is selected the ramps will based on Angstroms. If Thickness (%) is selected the ramps will be based on percent of the current layer thickness.

Rate Ramp Start #1 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter determines the thickness value to trigger the start of the first rate ramp. A value of 999.9 will disable the rate ramp function and the Rate Ramp Stop will be hidden. Please note that all the Rate Ramp Start parameters can also be used as thickness setpoints for triggering I/O events.

Rate Ramp Stop #1 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter defines the ending thickness for rate ramp #1. Hidden if Rate Ramp Start #1 is 999.9 Å or 100%

Deposit Rate #2 (0.0 to 999.9 Å/sec)

This parameter defines the second rate.

Rate Ramp Start #2 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter determines the thickness value to trigger the start of the second rate ramp. A value of 999.9 will disable the rate ramp function. Hidden if Deposit Rate #2 is 0.0

Rate Ramp Stop #2 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter defines the ending thickness for rate ramp #2. Hidden if Rate Ramp Start #2 is 999.9 Å or 100%

Deposit Rate #3 (0.0 to 999.9 Å/sec)

This parameter defines the third deposition rate. Hidden if Deposit Rate #2 is 0.0

Rate Ramp Start #3 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter determines the thickness value to trigger the start of the third rate ramp. A value of 999.9 Å or 100% will disable the rate ramp function. Hidden if Deposit Rate #3 is 0.0

Rate Ramp Stop #3 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter defines the ending thickness for rate ramp #3. Hidden if Rate Ramp Start #3 is 999.9 Å or 100%

Deposit Rate #4 (0.0 to 999.9 Å/sec)

This parameter defines the fourth deposition rate. Hidden if Deposit Rate #3 is 0.0

Rate Ramp Start #4 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter determines the thickness value to trigger the start of the fourth rate ramp. A value of 999.9 Å or 100% will disable the rate ramp function. Hidden if Deposit Rate #4 is 0.0

Rate Ramp Stop #4 (0.000 to 999.9 kÅ or 0 to 100%)

This parameter defines the ending thickness for rate ramp #4. Hidden if Rate Ramp Start #4 is 999.9 Å or 100%

Deposit Rate #5 (0.0 to 999.9 Å/sec)

This parameter defines the fifth deposition rate. Hidden if Deposit Rate #4 is 0.0

Deposition Sweep Pattern (0 to 63)

This parameter selects a XY sweep pattern for the Deposition state. Once a pattern is selected that pattern will continue to be output till a new pattern from 1 to 63 is selected.

When "0" is selected, no change in pattern output is made. A XY Sweep is configured in the source setup.

Time Setpoint (0 to 9:59:59)

This parameter defines the time from the start of the layer until the time setpoint event is triggered.

Feed Enabled (Enabled, Disabled)

This parameter defines whether the Feed parameters are displayed and used

Ramp To Feed Time (if Feed Enabled, 0 to 9:59:59)

This parameter defines the time allowed for the source power to go from the last deposition power to the Feed Power. The default for this parameter is zero.

Feed Power (if Feed Enabled, 00.0 to 99.9%)

The Feed Power parameter defines the source power level during the feed state.

Feed Time (if Feed Enabled, 0 to 9:59:59)

The Feed Time parameter sets the feed time. This parameter can also be used as a delay between the deposit state and the idle state. The default for this parameter is zero which disables the feed function.

Feed Sweep Pattern (if Feed Enabled, 0 to 63)

This parameter selects a XY sweep pattern for the Feed state. Once a pattern is selected that pattern will continue to be output till a new pattern from 1 to 63 is selected. When "0" is selected, no change in pattern output is made. A XY Sweep is configured in the source setup.

Ramp To Idle Time (0 to 9:59:59)

This parameter defines the time allowed for the source power to go from the last deposition power or feed power to the Idle Power. The default for this parameter is zero.

Idle Power (00.0 to 99.9%)

This parameter defines the source power after the feed or deposit states until the next Soak or abort state. If the idle power is greater than zero then the next layer using this source and pocket will start from the Predeposit state. If any subsequent layer uses the same source but a different pocket, the idle power will be automatically set to zero.

Maximum Power (00.0 to 99.9%)

The maximum power parameter sets the maximum allowable source power for this material. The deposition power will not be allowed to exceed this value.

Power Alarm Delay (0 to 99)

This parameter sets the time required for the deposit power to be at Maximum or Minimum power before the alarm will be triggered.

Minimum Power (00.0 to 99.9%)

This parameter sets the minimum power level for the minimum power warnings. If the power is at or below this level during a deposit a Minimum Power attention warning will be given. If this condition remains true for longer than the time set by the Power Alarm Delay parameter then a Minimum Power Alert warning will be given.

Rate Dev. Attention (00.0 to 99.9%)

The rate deviation attention parameter sets the allowable percent deviation from the deposition rate. If the deposition rate deviates by more than this percentage during the deposition, than a rate deviation attention message will be displayed in the Parameter/Status display. The default setting of 00.0% disables this function.

Rate Dev. Alarm (00.0 to 99.9%)

This parameter sets the percent deviation from the deposition rate required to trigger a rate deviation alarm. The default setting of 00.0% disables this function.

Rate Dev. Abort (00.0 to 99.9%)

The rate deviation abort parameter sets the allowable percent deviation from the deposition rate. If the deposition rate deviates by more than this percentage and the deposit power is at the maximum or minimum power alert level then the process will be aborted. The default setting of 00.0% disables this function.

Sample Dwell% (000.0 to 100.0)

The Sample Dwell% parameter establishes the percentage of the Sample Time for which the crystal is being sampled. Rate sampling is used for high deposition thickness where crystal life is a problem. By sampling the rate periodically and setting the power level to establish rate control, then closing the crystal shutter and maintaining the power level, a large deposition thickness can be achieved with one crystal. The primary sensor must have an individual shutter for the rate sample feature. The default for this parameter is 100% which enables sampling at all times.

Sample Period (0 to 9:59:59)

The Sample Period parameter defines the sample period. For example, a sample time of 5 minutes and a dwell of 40% will result in the crystal being sampled for 2 minutes, then the crystal shutter is automatically closed for the remaining 3 minutes while the deposition power is kept constant. Please note, once the crystal shutter has opened, there is a 5-second delay for crystal stabilization before measuring.

Crystal Marginal % (0-99)

This parameter defines percent that causes the Crystal Marginal event. Default is 82%.

Crystal Fail (Halt, Time Pwr, Switch, SwitchtTimePwr) (Sensor Profile Disabled)

This parameter defines the controller's action in the event of a crystal failure. The options are:

- 6. To halt the process
- 7. Finish the current layer on time-power

- 8. Switch to a backup crystal, halt if second crystal fails
- 9. Switch to a backup crystal, finish the current layer on time-power if second crystal fails

Time power will only work if the 862 is in states Deposit 1,2,3,4, or 5 and average rate is between 50% and 150% of the target rate. Note when the 862 is in time-power it will be unable to execute any further rate ramps.

Backup Sensor (1 to 4) (Sensor Profile Disabled)

This parameter defines the backup sensor input for the backup crystal. For a dual sensor head, this parameter is set to 2 assuming sensor #1 is the primary crystal. However, for six crystal sensor head, this parameter would be the same value as the Sensor# parameter and the Backup Crystal # parameter below would be set to two. This is because the six crystal sensor head uses one sensor input to measure any of its six crystals while the dual sensor head uses two sensor inputs to measure either crystal.

Backup Tooling Factor % (10.0 to 499.9%)(Sensor Profile Disabled)

This parameter defines the tooling factor for the backup sensor head

Backup Crystal (1 to 8) (Sensor Profile Disabled)

This parameter defines the backup crystal number.

Crystal Switch Settling (sec) (0 to 240)

This parameter defines the time after a crystal switch the PID is disabled and the power setting is continuing at the same setting it was before the switch for the time indicated. Default is 0.

5.5 PROCESS

Selecting View/Edit Process from the Main Menu will present the Select Process screen to delete, copy, view or edit any one of up to 99 processes. Press on a process and the option menu will pop up. Then select option.

Figure 5-21, Select Process screen

59. Define A Process

Processes can have a combination of single material and co-deposition layers

0.0 Rate Å/s	0.0 0.001 Power % Thk KÅ	0.0 0.0 B Rate Å/s B Power %	0.000 999 B Thk KÅ Health	6 00:00:00 Time	പ	0.0 0.0 0.001 0 Rate Å/s Power % Thk KÅ B		0.000 99% B Thk KÅ Health	00:00:00
	24 - Layer #1 ess 1material			Ready		tmp - Layer #1			Ready
						AlumOxide Layer #1			
Layer	Material	Thickn	ess (KÅ) P	:k		Codeposit	Off		
1	SiO2	10				Material	AI203		
2	Au	2				Materia	AIZOJ		
	Au	2		_	(\mathbf{i})	Thickness (KÅ)	1		
3	Ti	33							
						Pocket	Use Materia	l Pocket	
		مربط المبيرة			\leftarrow				÷
		Add Layer							

0.0 Rate Å/s	Power %	Thk KÅ	0.0 B Rate Å/s	O.O B Power %	0.000 B Thk KÅ	99% Health	00: Time	00:00	. H-i I	0.0 Rate Å/s		0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health			
	3 <mark>24 - Layer</mark> cess 2Mat1							Ready			1324 - Lay 1at1324 La							Ready	
Layer	Material	A Thi	k Pcl	k Mate	erial B	Ratio	Pck					Codepos	it On						
1	AI2	0.4		AI12		50						Material	A AI2						
2	SiO2	11							í		Thick	ness (KÅ)	A 0.4						(i)
3	All	22.	2	Al2		55			J										
												Pocket	A Use	Materia	al Pocket		`	\checkmark	
											Cros	stalk (%)	A 0						
			A	\dd Laye	r				\leftarrow			Material	B AI12	2			`	\checkmark	\leftarrow

Figure 5-23, Define Codeposition Process screen

Selecting a process will bring up the Define Process screen as shown in figure 5-22. In this screen, enter all of the layers that define a process. Each layer consists of a material and the desired thickness for the layer. A process can have from 1 to 999 layers as long as the total number of layers in all the processes is not greater than 999. The following list describes all of the process parameters:

3. Process Name (twelve character alphanumeric field)

Each process is referenced by a twelve-character alphanumeric process name. You enter a process name using the on screen keyboard. Please note that the active process name is displayed in the upper left-hand corner of all the status screens.

Layer (1 to 999)

This column shows the layer number in the process. With the menu for a layer number you can copy or delete this layer.

Codeposit (On/Off)

This parameter controls if one or two sources are controlled on the layer.

Material (A)

This parameter defines the material for this layer. The layer material is selected from the list of materials defined in View/Edit material. Therefore, you should define all of the necessary materials for the process before defining the process.

0.0 Rate Å/s	0.0 Power %	0.000 Thk KÅ	0.0 B Rate Å/s	0.0 B Power %	0.000 B Thk KÅ	99% Health	00:0	0:00	Д
	ayer #1.							Ready	
🖐 Alun	nOxide La	iyer #1							
	La	yer #1 Mat							
		All							
	-	AI2							
		Al12				\sim	: -		U
		Sens1and2	2						
		Sens2							
		Sens1234				<u>←</u>			\leftarrow

Figure 5-24, Select Layer Material screen

Thickness (A)(000.0 to 999.9 kÅ)

This parameter defines the desired thickness for the layer. The default for this parameter is 0.000 K ang. For codeposition material A controls the final thickness.

Pocket Override (A)

The pocket override lets you override the pocket number that is set in the material. This value can be set from 0 to 30. If set to 0 then there is no override and the pocket number set in the material will be used. Pocket override is useful for processes that require a new pocket of material for each layer, but all the same material settings.

When codeposit is On the following parameters are available:

Crosstalk (%) A

Crosstalk is the percent of measured rate and thickness from source B subtracted from the source A rate and thickness measurement.

Material B

This parameter defines the material B for this layer.

Ratio (%) B (0 to 999.9)

This parameter defines the rate for material B as a percentage of the rate for material A

Pocket Override B

This parameter defines material B pocket override 1 to 30, or 0 = Use Material Pocket

Crosstalk (%) B

Crosstalk is the percent of measured rate and thickness from source A subtracted from the source B rate and thickness measurement.

•

OPERATION

6.1 INITIAL POWER UP

Upon initial power up the unit will screen will be white for 10 seconds, then black for 20 seconds, then display a splash screen for approximately 1 minute. The display will then show the controller configuration information. The unit will stay in this state until anywhere on the touch screen is pressed then the unit will go to the main screen.

Figure 6-1, Splash Screen

Telemark Model 862 De Software Rev. 0.2.6	
IP Address 192	
Hardware Confi	guration
Source/Sensor 1 and 2	Installed
Source/Sensor 3 and 4	Installed
I/O Card 1	1/O, 37 Pin
I/O Card 2	Input, 25 Pin
I/O Card 3	Not Installed
I/O Card 4	Not Installed
Touch anywhere	to continue.

Figure 6-2, 862 Configuration Screen

6.2 DISPLAYS

All the operating displays are updated several times per second.

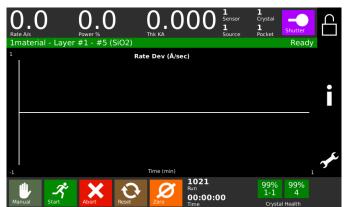


Figure 6-3, Operating Display

O.O Rate A/s 2Mat1324 - Lay	O.O Power % Yer #1 - #1 (AI1)	O.O Thk KA 0.400		1 nsor Crystal 1 urce Pocket	Shutter Ready	£
1		Rate Dev (Å/se	ec)			
-1		Time (min)		_	1	•
O. O Rate A/s	O.O			, 3 nsor 1 urce Pocket	Shutter	
	ver #1 - #2 (Al2)	THK KK 0.200	/ 30	arce Pocket	Ready	
1		Rate Dev (Å/se	ec)			,
-1		Time (min)			1	z
1 2	X C	ð Ø	1021 ^{Run} 00:00:00	99% 99% 1-1 2-1	6 99% 9 3-1	99% 4
Manual Start	Abort Reset	Zero	Time	Cry	tal Health	

Figure 6-4, Operating Co-Deposition Display

60. Rate

Green numbers indicating the target rate are displayed during deposition.

A two to three digit display with a floating decimal point is used to display deposition rate in angstroms per second at a resolution of 0.1 Å/sec from 0 to 99.9 Å/sec, and a resolution of 1.0 Å/sec for rates from 100 to 999 Å/sec.

If the Display parameter Extended Rate Precision is set to Enable, then the 862 will display 0.01 Å/sec. Depending on the material properties

61. Power

A two to three digit display with a fixed decimal point displays percent of maximum power with a resolution of 0.1% from 0 to 99.9%. This corresponds to the control voltage range of 0 to 9.99 volts.

62. Thickness

Green numbers indicating the target thickness are displayed during the layer.

Four digits with an autoranging decimal point display measured thickness in KÅ with a resolution of 1 Å from 0 to 9.999 KÅ, a resolution of 10 Å from 10.00 KÅ to 99.99 KÅ and a resolution of 100 Å from 100.0 KÅ to 999.9 KÅ.

63. Process Name, Layer Number and Material

1material - Layer #1 - #5 (SiO2)

When running a process the name of the current process is displayed on the left of the status bar. Note the status bar will be purple in simular mode.

1material (Layer #1) #5 (SiO2)

The current layer of the current process is displayed next to the process name on the status bar.

Ready

Ready

Rev 1.0.7

Film Number

When running a film the film number and material name will show on the left of the status bar.

The current Material number and name are displayed next to the layer number on the

65. System Status

1material - Layer #1 - #5 (SiO2)

The current 862 system status is displayed on the right of the status bar.

66. Source Number

2 Source

status bar.

64.

The current source number is displayed.

67. Pocket Number

1 Pocket

The current pocket number is displayed if the 862 has selected one.

68. Sensor Number

The current censor number and crystal numer are displayed. If crystal averageing is used for more than 1 sensor then the crystal numers are not shown.

69. Crystal Health %

A two digit display is used to show the health percentage of the sensor crystal in use. A fresh crystal starts out with a health of 99%.

1material - Layer #1 - #5 (SiO2)

OPERATION

A good crystal will have a green background. A marginal crystal will have a yellow background. If no crystal is attached or a bad crystal, this will show "--" and have a red background.

70. Run Number

The current run number is displayed. This number can be changed by pressing the Start – Change Run Number.

71. Time To Go

Time To Go is displayed in hours, minutes and seconds. This display can be configured to show the estimated state or layer time or the elapsed process, layer or state times.

6.3 OPERATING CONTROLS

Normal operation of the 862 is controlled by seven operating buttons, Manual, Start, Abort, Reset, Zero, Shutter and Status.

72. Manual Button

This button is used to toggle the 862 Manual mode on and off. When the button is surrounded by a flashing white box it indicates that the controller is in manual power control mode. This mode may be selected at any time providing that the controller is not in Abort mode. The Manual mode indicates that the source control voltage output is being controlled through the Remote Power Handset. In the Manual mode the control voltage remains constant unless incremented up or down by means of the Remote Power Handset. At entry into the Manual mode, the power is left at the last value prior to entry and is thereafter modified only through the Remote Power Handset. Exit from the manual mode is accomplished by means of the Manual or Reset button.

The 862 can also be aborted through the Remote Power Handset. This abort feature is active whether or not 862 is in the manual mode.

73. Start Button

The Start button starts a process, starts a layer, resumes an aborted process, or notifies the 862 that the pocket or crystal is in position. **When the button is surrounded by a**

white box it indicates the controller is in process. When this button is pressed the first time either "Start" or Select process" can be chosen. "Start" will start the process and "Select process" will bring up a list of stored processes to choose from.

74. Abort Button

The Abort button puts the 862 into the Abort mode. All source powers are set to zero and discrete outputs are set to false state except the Abort output. A white outline around this button indicates the controller is in the abort mode and the status bar color changes to red and displays the ABORT status.

75. Reset Button

The Reset button is used to clear the controller from Abort mode and put it into the Ready mode, in which a process can be started. The Reset button is inactive during the In Process mode so that a premature exit from the In Process mode requires an abort.

76. Zero Button

Pressing the Zero button causes the thickness display to go to zero. This button is active at all times and if pressed during the deposit state will result in a film thicker than that programmed amount equal to the thickness displayed at the time the display was zeroed.

77. Shutter Button

This button is used to manually open and close all source shutters. **A white outline around this button indicates that the active source shutter relay is closed** (If any shutter is configured). When the controller is in the Process Ready mode, this button may be selected to open or close the shutter.

6.4 SIDE BAR CONTROLS

78. Status Button

This button is used to cycle through the different status screens. The display settings allow the six different status screens to be active or not. Refer to chapter 6 for a detailed description of these status screens.

79. Program Button

Pressing the programming button will bring up the main programming screen.

6.5 MANUAL POWER HANDHELD

Figure 6-5, Manual Power Handheld

Manual Mode is selected by depressing the Manual button on the touchscreen. The button will be surrounded by a white blinking line that indicates the controller is in Manual mode.

The Manual Mode is identical to the normal mode in all respects except that source power is controlled only through the Manual Control Handheld, see figure 6-4.

Pressing the Up button will increase the power.

Pressing the Down button will decrease the power.

Pressing the "ABORT" button will put the controller into the Abort mode.

The Abort Mode is active whether or not the 862 is in Manual Mode and therefore can be used as a remote "panic button".

The minimum increment by which the power is increased or decreased is 0.1%.

6.6 SIMULATE OPERATION

Testing the 862 is best accomplished by checking its operation in the Simulate mode. This mode can be selected by using the programming Main Menu, Edit System Setup, Edit Utility Setup, to select Simulate mode ON, then use Start to select and run a process in Simulate mode.

The Simulate mode is identical to the Normal mode except that the sensor input is simulated.

6.7 STARTING A PROCESS

Pressing the Start button while the controller is in the Ready state will present the menu shown below. From this menu you can:

Start –Starts the current process select a starting layer

Start from Layer – Starts from input layer number of the current process

Select Process – Selects a different process

Select Film – Selects a film to run (a one-layer film that uses the material thickness value)

Change Run Number – Changes the run number to in run number

The Run number is displayed on the top bar

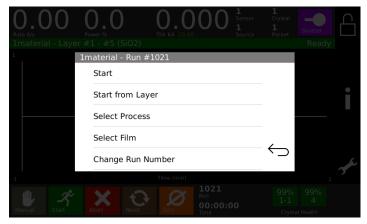


Figure 6-6, Run Selection Screen

6.8 STARTING A NEW LAYER

The Start button is also used to start individual layers when the controller is set up for manual layer sequencing. The controller will prompt the operator to press the Start button to start the next layer.

6.9 RESUMING AN ABORTED OR HALTED PROCESS

Press Start to resume the process or Reset to cancel.

The Start button is also used to resume an aborted or halted process. Note that Start button is green and has a white box around it then the process can be resumed. Otherwise, the controller has to be reset, and the process has to be started over.

Follow the prompt to resume the process.

6.10 STATUS DISPLAYS

There are six different run time status screens that can be displayed at any time by pressing the Status button (providing they have each been enabled using Edit Display Setup). Repeatedly pressing the Status button will cycle through the six status screens, shown below.

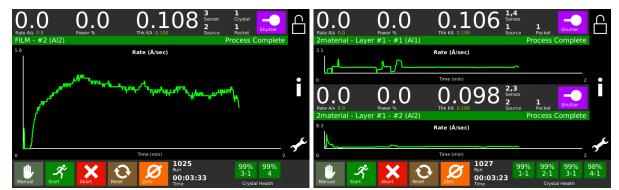


Figure 6-7, Rate vs. Time Graph

Figure 6-8, Rate Deviation vs. Time graph

TELEMARK Model 862 Deposition Controller Manual

OPERATION

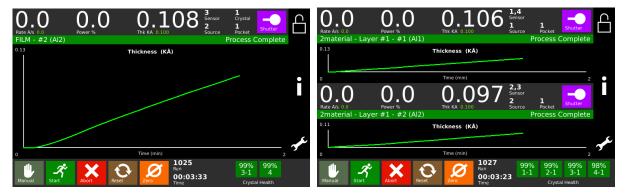


Figure 6-9, Thickness vs. Time Graph

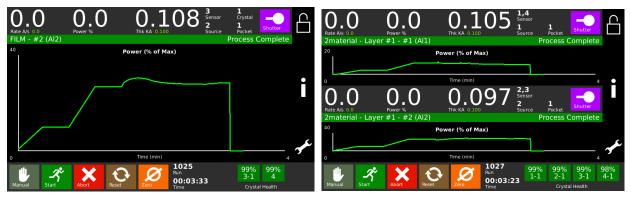


Figure 6-10, Power vs. Time Graph

0.0 Rate Å/s 2mater	0.0 Power % ial - Laye	0.107 Thk KÅ er #1	0.0 B Rate Å/s	O.O B Power %	0.098 B Thk KÅ	Health	00:03:23 Time cess Complete	Ē
Src#	Pckt#	Power	Snsr#	Xtal#	Health	Frequenc	y Th (KÅ)	
1	1	0.0	1	1	99%	5984353.3	0 0.078	
2	1	0.0	2	1	99%	5983053.0	4 0.013	
3	-	0.1	3	1	99%	5984717.6	6 0.136	
4	-	0.0	4	1	98%	5978474.8	8 0.135	ze
Manual	Start	Abort	Reset	Zero	1027 _{Run} 00:03: Time	99% 1-1	99% 99% 2-1 3-1 Crystal Health	98% 4-1

Figure 6-11, Source/Sensor Status screen

O. Rate	0 Å/s	0.0 Power %	0.000 Thk KÅ				99% Health	00:03:32	\cap
		#2 (Al2)					Pro	ocess Complete	
	Inj	out			Output				
1	-				F Source	1 Shutter			
2	-				F Source	2 Shutter			
3	-				-				
4	-				-				
5	-				-			\checkmark	
6	-				F event				ĸ
7	-				-			\vee	5
	ılı,	Ř	X	Ð	Ø	1024 Run	_	99% 99% 3-1 4	
Ma	nual	Start	Abort	Reset	Zero	00:03:32 Time	2	Crystal Health	

Figure 6-12, I/O Status Screen

6.11 MODES

Modes are conditions which the controller can occupy. Some modes are indicated by white boxes around the operating buttons. Other modes are displayed in the top right hand corner of the status display. These controller modes are described below.

80. Ready

The Process Ready Mode indicates the 862 has been reset and is awaiting a Start button press.

81. Abort

The Abort mode is indicated by "Abort" and a red status bar. In Abort Mode all displays and operating buttons, with the exception of the Start and Reset buttons, are inoperative. All source control outputs are forced to zero, the Abort relay is closed and all discrete outputs are forced to open circuit. In addition, if the controller initiated the abort then the condition which caused the abort will be displayed in the top right hand corner of the Parameter/Status display. Exit from Abort Mode requires either a Reset or Start button press.

82. In Process

A white box around the Start button is displayed when the controller is in the In-Process Mode.

83. Not Sampling

This mode indicates that the sensor crystal is shuttered from the source and that the deposition rate is established using the last power level. Sampling mode is set by two material parameters, Sample Dwell % and Sample Period.

84. Process Complete

This mode indicates that the selected process has run to completion. A Process Complete message is displayed in the top right hand corner of the status display. In

TELEMARK Model 862 Deposition Controller Manual

addition, an attention warning will sound. The controller remains in this mode until a reset signal puts it into the Process Ready mode.

85. Manual

This mode is indicated by a White flashing box around the Manual button. In this mode the control voltage output is controlled through the Remote Power Handset.

86. Simulate

This mode simulates rate and thickness build-up by simulating the sensor input rather than the actual sensor.

6.12 STATES

Figure 6-12 shows the different states that make up a complete deposition cycle, such as Rise to Soak, Rise to Predeposit, etc. The controller moves from state to state as the deposition progresses. As

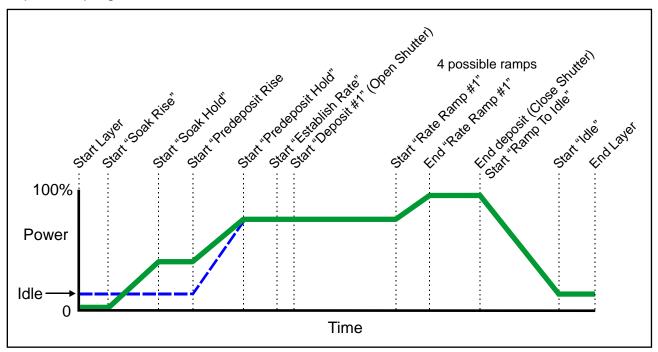


Figure 6-13, Typical Process Profile

6.13 ERROR, WARNING, AND INFORMATION MESSAGES

These messages are displayed in the top right-hand corner of the status screen.

In addition, there are three levels of audible warnings associated with the trouble conditions, Attention, Alert and Alarm. An asterisk in the Clear column indicates the warning sound will clear when the condition clears.

Touching the screen will also clear the sound.

Table lists the messages and warning levels. The list is arranged in descending order of priority. In the event that more than one warning level is triggered, the higher level has priority. The action column indicates what if any action is taken as a result of the trouble.

	Warning		
Messages	Туре	Clear	Action
Min Rate&Max Power	Alarm		Abort
Max Rate&Min Power	Alarm		Abort
System Setup memory corrupted	Alarm		Halt
Process memory corrupted	Alarm		Halt
Material memory corrupted	Alarm		Halt
Rate Est. Error	Alarm		Halt
Crystal Failure	Alarm/Attn	NO/*	Halt
Source Fault	Alarm		Halt
Sensor Fault	Alarm		Halt
Time Power	Alarm		Time/Power
Rate Dev. Alarm	Alarm	*	
Alarm Action	Alarm		
Crystal Marginal	Alert/Attn	NO/*	
Rate Dev. Alert	Alert	*	
Max power Alert	Alert	*	
Min power Alert	Alert	*	
Alert Action	Alert	*	
Xtal Fail Switch	Attention		Crystal Switch
Xtal Mrgn Switch	Attention		Crystal Switch
Rate Dev. Atten	Attention	*	
Max power	Attention	*	
Min power	Attention	*	
Change source # X to (material name) and press Start to continue.	Attention		Hold
Change sensor # X to crystal # X and press Start to continue.	Attention		Hold
Attention Action	Attention	*	
Press Start to resume process.	N/A		
Start to continue.	Attention	*	Hold

An asterisk in the Clear column indicates the warning sound will clear when the condition clears.

Touching the screen will also clear the sound.

Table 6-1, Error, Warning, and Information Messages

87. Description

Each of the messages is described below.

88. Min Rate & Max Power

This message indicates that the output power is at the maximum power level set by the Maximum Power parameter and the rate deviation is below the limit value set in the

Rate Dev. Alarm parameter. When this happens, the controller will go into the Abort mode and the Alarm will sound.

89. Max Rate & Min Power

This message indicates that the output power is at the minimum power level set by the Minimum Power parameter, and the rate deviation is above the limit value set by the Rate Dev. Abort parameter. When this happens, the controller will go in Abort mode and the Alarm warning will sound.

90. Rate Est. Error

The controller is unable to establish the programmed rate within the time specified in the Rate Establish Time parameter. The rate is considered established when it stays within the Rate Establish Error % for 5 seconds.

91. Crystal Failure

This condition indicates lack of a valid signal from the sensor, and generally results from a failed crystal but may also indicate problems in the crystal mounting or the interconnection between the sensor and the controller. If the primary crystal fails and the process is not in deposit state, the Attention warning will sound. If the backup crystal fails and the process is not in the deposit state, the alarm will sound and the process will be halted.

92. Time Power

This message is displayed when the controller is completing the current layer based on the last power and rate. This occurs in the event of a crystal failure without a backup.

93. Rate Dev. Alarm

The deposition rate error is greater than the rate deviation value set in the Rate Deviation Alarm parameter.

94. Alarm Action

This message indicates the Alarm sound was initiated by an internal action.

95. Crystal Marginal

The sensor crystal in use has exceeded the allowable crystal marginal setting. If the crystal is the backup one, the Alert warning will sound when the process is in deposit state. If the primary crystal is in poor quality then the Attention will sound. The percent that causes a crystal to be marginal in set in the material settings, default is 82%.

96. Rate Dev. Alert

The deposition rate deviation is greater than the value set in the Rate Deviation Alert parameter.

97. Max Power Alert

Indicates that the power output level has been at the Maximum Power level longer than the time period set in the Power Alert Delay parameter.

98. Min Power Alert

Indicates that the power output level has been at or below the Minimum Power level longer than the time period set in the Power Alert Delay parameter.

99. Alert Action

This message indicates the Alert sound was initiated by an internal action.

100. Xtal Fail Switch

This message indicates the primary crystal has failed and the sensor input has been switched to the backup crystal. In addition, the Attention warning sounds. Press any button to clear the sound.

101. Xtal Mrgn Switch

This message indicates the primary crystal is marginal and the sensor input has been switched to the backup crystal. In addition, the Attention warning sounds. Press any button to clear the sound.

102. Rate Dev. Atten

The deposition rate deviation error is greater than the value set in the Rate Deviation Attention parameter.

103. Maximum Power

The output power is being limited by the value set in the Maximum Power parameter.

104. Minimum Power

The output power is at or below the minimum power set by the Minimum Power parameter.

105. Change Pocket

Prompts the operator to switch the source pocket to the correct position. The process will be on hold until the Start button is pressed. There is no message if the Control parameter is set to Auto (Source Setup Menu).

106. Change Crystal

Prompts the operator to switch the sensor to the correct crystal position. The process will be on hold until the Start button is pressed. There is no message if the Control parameter is set to Auto (Sensor Setup Menu).

107. Attention Action

This message indicates the attention sound was initiated by an internal action.

7.1 ESTABLISHING 862 CONTROL LOOP PARAMETERS

As explained above, the 862 utilizes three control loop parameters referred to as PID parameters; Proportional gain, Integral Time constant and Derivative Time constant to provide for optimization of the control loop. The 862 provides default values for each of these parameters.

Parameter	Minimum value	Maximum value	Default value
Proportional gain	1	9999	600
Integral time constant, sec.	0	99.9	99.9
Derivative time constant sec.	0	99.9	0.0

Default and Range for PID Parameters

The following table lists some recommended PID values for different types of deposition sources. These values represent a good starting point and in some cases may not need to be further modified.

Suggested PID Starting Values for Different Sources

Parameter	Electron Beam Gun	Filament Boat
Proportional gain	600	600
Integral time constant, sec.	99.9	99.9
Derivative time constant sec.	0.0	75.0

In the 862, the PID parameters are defined at the material level because different materials often require different PID settings even though they may be deposited from the same source. Therefore it is usually necessary to establish the PID parameters for every each material and deposition source.

TELEMARK Model 862 Deposition Controller Manual

The first step in setting the PID parameters for a new material or source is to enter the recommended starting values listed above. Be sure and choose the PID values for the type of source you're using. Next, create a dummy process with the first layer set for the new material. Start and abort the dummy process to load the new material as the active material. You should now see the material's name in the top line of any Status Screen. Next, open the shutter and put the 862 in the manual power mode and adjust the source power using the remote handset to establish the power ramp parameters. Set the Predeposit Power level at or slightly below the power needed to get the desired deposition rate.

With the power ramp parameters defined, the next step is to start the dummy process to see how well the 862 controls the rate. If the rate is too high or low when the shutter opens then make a note to go back and adjust the Predeposit Power level. Watch the rate graph and the power display. If the rate is different from the target rate then you should see the 862 adjust the power attempting to achieve the target rate. If the rate is close to the target, then you should temporarily change the rate to see how the 862 reacts. Ideally the 862 will adjust the power so that the rate goes right to the target rate without overshooting it. If it does then no further adjustments are necessary.

If it seems like the 862 is reacting too slowly, press the Program button to get back to the material screen and increase the Proportional Gain parameter. Begin with changes of about 10 to 20%. Changes of this magnitude are a good starting point because they are large enough to show the effect of the parameter and small enough that you won't greatly overshoot the ideal setting. Remember that too much Proportional Gain will make the system unstable and too little will make the 862 slow to react. An unstable system is evident by the rate oscillating around the target value. A general rule of thumb is the faster the source, the larger the Proportional Gain. And conversely, the slower the source the smaller the Proportional Gain.

With the Proportional Gain at an acceptable value, the next step is to adjust the Derivative Time if necessary. Disturb the system again by changing the target rate. Watch the rate graph as the rate approaches the target. If the rate overshoots the target then increase the Derivative Time and change the target rate again to see the effect. Repeat these steps slowly increasing the Derivative Time until the rate goes right to the target without overshoot.

In very slow systems such as large filament boats, the Proportional Gain parameter may have to be set so low to maintain stability where the rate smoothly levels off but remains below the target value. In this case you will need to adjust the Integral Time parameter. This parameter works in reverse meaning the smaller the value the larger the effect. So, slightly decrease this parameter then watch the rate graph. The rate should ramp up to the target without overshoot. If the ramp takes too long then slowly decrease the Integral Time again and repeat these steps until you are satisfied with the control.

7.2 EMPIRICAL CALIBRATION

For many film materials the film density and acoustic impedance is known to sufficient accuracy that the values can be used directly, and empirical calibration of these

parameters is not necessary. A library of material names, density and acoustic impedance of the more commonly deposited materials is stored in the 862 memory. These materials are also listed in supplied pdf.

If the values of the density and acoustic impedance are not known they can be calibrated empirically as described below.

Calibration requires the establishment of the film density, the tooling factor and the acoustic impedance in this order. If the approximate value of the parameters is known they should be used initially. If the acoustic impedance is not known use the value 8.83, the value for quartz.

108. Film Density

Establishing the film density can be accomplished by depositing a trial film on several test substrates placed around and as close as possible to the sensor crystal and in the same plane. The trial deposition should be thick enough to allow an independent measurement of the film on the test substrates to be made with adequate precision using an optical interferometer or surface measuring device.

When making the trial deposition, use a fresh crystal and remember to write down the final thickness reading displayed by the 862, as this will be needed in the calculation. If the acoustic impedance parameter has been accurately established previously, a fresh crystal is not required.

Determine the average film thickness on the test substrates and use the following equation to calculate the material's density:

Density = (Displayed Thickness/Average Measured Thickness) * Density(test)

Where Density(test) is the density parameter setting used during the calibration run.

Once the calibration procedure is complete, the programmed film density is correct for this particular film.

109. Tooling Factor

Having established the film density the tooling factor should be established. Place several test substrates at representative locations in the deposition fixture. Again deposit a trial film as above using the known film density, and a fresh crystal unless the programmed acoustic impedance is known to be correct. Remember to write down the final thickness reading displayed by the 862, as this will be needed in the calculation. Determine the average film thickness on the test substrates. If the average measured thickness differs from the displayed thickness, use the following equation to calculate the correct tooling factor.

Tooling = (Average Measured Thickness/Displayed Thickness) * Tooling(test)

Where Tooling(test) is the tooling parameter setting used during the calibration run.

110. Acoustic Impedance

Establishment of the acoustic impedance requires that the crystal be heavily loaded. Continue to deposit on the sensor crystal until the crystal health approaches 50% or

until the crystal is approaching the end of its useful life. Deposit another trial run as above but this time use the manual power mode instead of the automatic mode. Measure the average film thickness on the test substrates and this adjust the acoustic impedance parameter up or down to bring the displayed thickness into agreement with the measured thickness. This calibrates the acoustic impedance parameter.

The 862 is now fully calibrated for the film in question and should produce consistent and accurate films.

B THEORY OF OPERATION

8.1 BASIC MEASUREMENT

The 862 uses a quartz crystal as the basic transducing element. The quartz crystal itself is a flat circular plate approximately 0.55 in. (1.40 cm) in diameter and 0.011-0.013 in. (28-33mm) thick for 6 and 5 MHz. The crystal thickness is inversely proportional to the crystal frequency. The crystal is excited into mechanical motion by means of an external oscillator. The unloaded crystal vibrates in the thickness shear mode at approximately the frequency of the specified crystal. The frequency at which the quartz crystal oscillates is lowered by the addition of material to its surface.

8.2 CRYSTAL HEALTH CALCULATION

Crystal Health decreases from a value of 100% for an uncoated crystal blank to 0 at a total deposited aerial mass of 25 mg/cm². This value corresponds to a crystal frequency shift of approximately 1.5 MHz, or an aluminum thickness of 925 KÅ.

Very few materials can be deposited to this thickness without producing a crystal failure, so that a crystal health of zero will not normally be achieved and indeed for some materials the crystal health may never get below 90%.

In order to establish the point at which the crystal should be changed, several trial runs should be made to determine the point at which the crystal fails and subsequent crystals should then be replaced well in advance of this point.

Because the crystal health is determined from the calculated film mass, the Acoustic Impedance parameter will affect the displayed crystal health.

8.3 RATE CALCULATION

The deposition rate is calculated by dividing the change in thickness between measurements by the time between measurements. The rate is then filtered by a three-pole digital filter to filter out quantizing and sampling noise introduced by the discrete time, digital nature of the measurement process. The above filter has an effective time constant of about 2 seconds. Following a step the displayed rate will settle to 95% of the final value in 5 sec.

8.4 RATE CONTROL

Deposition rate control is achieved in the 862 by comparing the measured thickness rate with the desired thickness rate. The rate error and the rate of change of rate error are then used to determine how much to increment the power up or down.

The amount the power is incremented is also affected by the response parameter. The response parameter is divided by 50, squared and then used as a multiplier in the determination of delta power.

The rate error is divided by the programmed rate and multiplied by 100 to obtain the displayed percent rate error.

8.5 EMPIRICAL CALIBRATION

For many film materials the film density and acoustic impedance is known to sufficient accuracy that the values can be used directly, and empirical calibration of these parameters is not necessary. A library of material names, density and acoustic impedance of the more commonly deposited materials is stored in the 862 memory. These materials are also listed in Table 9.1.

If the values of the density and acoustic impedance are not known they can be calibrated empirically as described below.

Calibration requires the establishment of the film density, the tooling factor and the acoustic impedance in this order. If the approximate value of the parameters is known they should be used initially. If the acoustic impedance is not known use the value 8.83, the value for quartz.

111. Film Density

Establishing the film density can be accomplished by depositing a trial film on several test substrates placed around and as close as possible to the sensor crystal and in the same plane. The trial deposition should be thick enough to allow an independent measurement of the film on the test substrates to be made with adequate precision using an optical interferometer or surface measuring device.

When making the trial deposition, use a fresh crystal and remember to write down the final thickness reading displayed by the 862, as this will be needed in the calculation. If the acoustic impedance parameter has been accurately established previously, a fresh crystal is not required.

Determine the average film thickness on the test substrates and use the following equation to calculate the material's density:

Density = (Displayed Thickness/Average Measured Thickness) * Density(test)

Where Density(test) is the density parameter setting used during the calibration run.

Once the calibration procedure is complete, the programmed film density is correct for this particular film.

112. Tooling Factor

Having established the film density, the tooling factor should be established. Place several test substrates at representative locations in the deposition fixture. Again, deposit a trial film as above using the known film density, and a fresh crystal unless the programmed acoustic impedance is known to be correct. Remember to write down the final thickness reading displayed by the 862, as this will be needed in the calculation. Determine the average film thickness on the test substrates. If the average measured thickness differs from the displayed thickness, use the following equation to calculate the correct tooling factor.

Tooling = (Average Measured Thickness/Displayed Thickness) * Tooling(test)

Where Tooling(test) is the tooling parameter setting used during the calibration run.

113. Acoustic Impedance

Establishment of the acoustic impedance requires that the crystal be heavily loaded. Continue to deposit on the sensor crystal until the crystal health approaches 50% or until the crystal is approaching the end of its useful life. Deposit another trial run as above but this time use the manual power mode instead of the automatic mode. Measure the average film thickness on the test substrates and this adjust the acoustic impedance parameter up or down to bring the displayed thickness into agreement with the measured thickness. This calibrates the acoustic impedance parameter.

8.6 CRYSTAL AVERAGING

The 862 can average the inputs of up to 4 sensors into the rate for one material. This can reduce the error from only one sensor looking at the vapor distribution. Ideally the sensors are places around the edge of the substrate fixturing. Looking at the sensor screen on the 861 will show the deposition on each sensor crystal to give a good picture of the vapor distribution. Each sensor has a tooling factor that can be set to adjust for the relative distance from the source to the substrate so that measurement can be calibrated to report the substrate thickness. Also, there is a weight factor that weights the sensor relative to the other sensors. If sensor 1 has weight of 100, rate of 20 and sensor 2 has a weight of 300 and rate of 10 then the average rate is $((100 \times 20) + (300 \times 10))/(100 + 300) = 12.5$

8.7 CO-DEPOSITION

The 861 can deposit to materials from two sources at one time. this can be used to deposit the same material from two source to achieve higher rates or it can be used to deposit two different materials to make an alloy film. Each lay in a process can be ether one material or co-deposition. Each materials Soak and Predeposit will run independently but will if the Soak and Predeposit are different total times the material that has a longer Soak and Predeposit will start first. Then the other material starts so that they both finish Soak and Predeposit at the same time and start depositing together.

All material parameters work the same as if it were a single material except for Deposition Rate. Process layer parameters that are needed when setting up a codeposition layer crosstalk and ratio parameters need to be determined. The parameter Ratio % B is the percent of material B relative to material A to be deposited on the substrate by controlling the rate of material B. This will override the rate parameter in material B.

If Ratio % B is 0.1 to 99.9 then the rate for material B will be less that material A. Example if rate for material A is 1 and Ratio % B is 50 then the rate for material B will be 0.5.

If Ratio % B is 100 then the rate will be the same as material A.

If Ratio % B is 100.1 to 999.9 then the rate for material B will be more that marital A.

Example if rate for material A is 1.0 and Ratio % B is 200 then the rate for material B will be 2.0

Ratio % B can also be set to "Use Material Rates" this will set the rate to whatever the rate is in the material independent of material A.

When running a co-deposition layer Cross talk parameters need to be entered. If a sensor material A was perfectly shielded from the other the material B source, then the default 0% would be used. But as material from the other source is deposited on the sensor for material A the higher the number of crosstalk % is. Ideally the positioning and shielding of the sensor will keep the crosstalk to a minimum to reduce error from deposition from the other source.

To determine what the crosstalk numbers should be follow these steps

First set the tooling factor for both materials and the max power

Then set the layer's material A and B with 0% crosstalk. Keep the desired Ratio% B as is. Then **Only turn on material A power supply.** Press Start or Use Start – "Start from layer" if not the first later. Abort deposition after reasonable amount has been deposited on the primary sensor. Note down the Thickness for materials A and B. Now divide thickness of material B by material A. Then multiply by 100 to get the Crosstalk percent for material A.

Example: A thickness is 1.023 and B thickness is 0.248.

 $0.248/1.023 = 0.242 \times 100 = 24.2\%$

Repeat the steps with Only material B power supply turned on.

Note down the Thickness for materials A and B. Now divide thickness of material A by material B. Then multiply by 100 to get the Crosstalk percent for material B.

Example: A thickness is 0.146 and B thickness is 1.092.

 $0.146/1.092 = 0.160 \times 100 = 16.0\%$

9

STANDARD INTERFACE

9.1 GENERAL

The 862 comes standard with both RS-232 serial and Ethernet interface. The computer interface of the Telemark 862 Deposition Controllers permits remote control using a personal computer or process controller. The protocol is changed in the Utility menu under Serial Protocol.

There are four types of protocols: Standard, 360C, ASCII Checksum and ASCII No Checksum. This chapter deals with the standard protocol.

9.2 RS-232 SERIAL INTERFACE

The standard RS-232 serial interface of the 862 allows one 862 to be connected to any other device with a RS-232 serial interface. A D9P connector is provided on the rear panel for permanent connection to the host computer. See figure 3-5.

The 862 acts as DTE, and, accordingly, the 9-pin connector has 'plug' pins. It can be used with a DCE or a DTE host cable connection providing the sense of the RxD/TxD data lines and the control lines is observed. Pin 2 'TxD' transmits data from the 862 to the host; pin 3 'RxD' receives data from the host. Pin 7 'CTS' is a control output signal from the 862, and pin 8 'RTS' is a control input signal.

In this implementation, pin 7 'CTS' means what is says, namely, this is an output control line, and when the 862 asserts this control line 'true' the host can transmit to the 862. On the other hand, pin 8 'RTS' is not quite what it may seem because this is a signal input to the 862, and it is intended that the host should assert this line 'true' only when the 862 is allowed to transmit data to the host. The 862 does not generate an RTS 'request-to-send'

as such for the host PC, so the host should assert pin 8 true whenever the 862 is allowed to transmit to the host, without being asked to do so.

The 862's RS-232 port is automatically set up to operate with the following specifications:

8 Bit data, No Parity, 1 Stop bit

In the utility menu the baud rate is selectable 9600, 19200, 38400, 57600, or 115200.

The 862 will process a maximum of 20 RS-232 input messages a second.

9.3 ETHERNET INTERFACE

The Ethernet interface allows the 862 to be connected to any number of other devices with a TCP/IP Ethernet connection. It can be run at the same time as the serial interface.

The 862 Ethernet IP number can be static or assigned by a DHCP server. If using static IP number on a companywide network, contact your IT department for a number to use so there is no chance of two devices having the same address. Computer Interface port is 4242. When remotely connecting to an 862 the port is usually added at the end of the IP address (example 10.10.1.126:4242).

The subnet mask is used by the TCP/IP protocol to determine whether a host is on the local subnet or on a remote network. The default is 255.255.255.0

9.4 PROTOCOL

All communications between the computer and the 862 are in bytes.

Example: To initiate a zero thickness instruction the computer would send the following bytes shown below. Different formats are shown that are used in different programming environments.

	Header	Interface Address	Instruction	Length	Message	Checksum
Decimal Bytes	255 254	001	000	001	008	246
Character String	Chr\$(255) Chr\$(254)	Chr\$(1)	Chr\$(0)	Chr\$(1)	Chr\$(8)	Chr\$(246)
Siemens IPC	ÿþ	\$01	\$00	\$01	\$08	ö
Hex	FF FE	01	00	01	08	DE

Header - Two byte header - FF FE i.e. decimal bytes 255 254

Interface Address - One byte controller address - The controller address byte defines the controller that should receive the message, or should respond to the message by transmitting data. The controller address will range from 0 to 32 (set via Edit System Setup, Edit Utility Setup, Interface Address).

Instruction - One byte instruction code.

Length - One byte message length.

Message - 0-249 byte message.

Checksum - One byte checksum, for the instruction code byte, message length byte and the 0-249 byte message.

The checksum is the two's complement of the one byte sum of all bytes from, and including, the instruction code to the end of the message. If the one byte sum of all these bytes is added to the checksum, the result should equal 255.

A single byte checksum can be generated using the calculation:

```
checksum= !(sum of all but the header bytes % 256) + 1,
```

i.e. the checksum is the bit inversion of the remainder byte which results from dividing the sum of all bytes by 256.

In Excel the check some can be calculated by:

=(255-MOD(SUM(all but the header bytes),256))+1

9.5 DATA TYPES

There are three data types sent over RS-232: one byte, two byte, and three byte parameters. All data types are sent as integers in binary format with the most significant byte first. The one byte data types are either ASCII characters, numeric values (0-255), or 8 bit registers. Some of the multiple byte data types are decimal values stored as integers. To convert these values to their decimal equivalent, use the following equation:

Decimal Value = (Integer Value)/(10^{DP})

where DP is the value's decimal point position. The decimal point positions for all the parameters are constant and are given in tables along with the parameters' range.

9.6 MESSAGE RECEIVED STATUS

Following the receipt of each message, the controller will send a one-byte 'received status' message, indicating how the message was received, with the following format:

Format:

Header - Two byte header - FF FE i.e. decimal bytes 255 254

Interface Address One byte controller address

Instruction Code = 253

Length = 2

Instruction Code of the received message

Receive code, see table below

Checksum

A value of 253 for the instruction byte indicates that this is a received status message. The Instruction Code byte indicates the instruction code of the message that was received. The following table shows a list of possible receive codes:

Receive Code	Description
0	Message received O.K.
1	Invalid checksum.
2	Invalid instruction code.
3	Invalid message length.
4	Parameter(s) out of range.
5	Invalid message.
6	Process undefined. Can't add layer.
7	Insufficient layer space. Can't add layer.
8	Can't send process log data while in process.

Example: Code 150 sent and received O.K.

Header	Address	Instruction	Length	Instruction Code Sent	Receive Code	Checksum
255 254	001	253	002	150	000	106

9.7 DEBUG COMPUTER INTERFACE

From the Program menu select the Interface button to get to a screen that will show all the sent and received RS-232 data. This may be helpful debugging any problems interfacing the 862 to a computer or PLC. This display is meant for low frequency messaging debugging, depending on the massages the debug computer interface display will not display all the messages under the maximum of 20 RS232 input messages a second. Displayed are the decimal number of each byte.

0.0 Rate		0.0 Power		000 ckness	98% Crysta	Health	00:0 Time	0:00	ட
ExA	AllSta	ate - La	iyer #1					Ready	
	Com	puter I	nterface						
F	Recv:	255 254	001 028 00	0 227					
9	Sent:	255 254	001 253 002	2 028 00	0 228				
9	Sent:	255 254	001 028 033	3 000 00	000 800 0	000 032	000		\bigcirc
9	Sent:	000 000	000 000 000	L 000 00	1 000 000	000 000	000		(i)
9	Sent:	000 000	000 000 000	000 000	1 000 000	000 098	000		
9	Sent:	000 000	053						
									/
				Clear Inp	out Buffer				\sim

Figure 9-1, RS-232 Debug Computer Interface Screen

9.8 INSTRUCTION SUMMARY

The following table is a list of valid instruction codes

Instruction Code	Description
0	Remote activation of controller
1	Send controller hardware configuration
5	Delete a material
6	Send a material
7	Receive a material
8	Send a material list
10	Send a process
11	Set process name
12	Delete a process
13	Send a process layer
14	Insert process layer
15	Replace a process layer
16	Delete a process layer
17	Send a process list
18	Send Sensor Profile List
19	Send Sensor Profile
20	Receive Sensor Profile
21	Delete Sensor Profile
28	Send controller status
29	Start process
31	Initiate automatic data logging
36	Send Process Log Directory
40	Send Process Run Time Value
41	Send Process Run Time Values
42	Send Material Run Time Value
43	Send Material Run Time Values
44	Send Sensor Run Time Value
45	Send Sensor Run Time Values
46	Send All Sensor Run Time Values
47	Send System Runtime Value
49	Get Value Updates
51	Select Process
248	Terminating Connection
249	Ping

9.9 INSTRUCTION DESCRIPTIONS - STANDARD

The following is a description of all the valid instructions along with an example of how they are used. All the examples assume the controller address is 1. Note that modifying a process or material via the RS-232 interface should not be done while a process is running.

114. Remote activation of controller (Code #0)

This instruction initiates a button press of the 862. The valid button codes are shown in the following table:

Button Code A	Description
2	Manual button
8	Zero button
16	Reset button
32	Abort button
64	Start button
128	End Deposition
Button Code B	Description
1	Switch Crystal to Backup
2	Source Shutter (A)
4	Source Shutter B

Format: Header, Address, Instruction=0, Length=1, Button Code A, Button Code B, Checksum

Example: To initiate instructions the computer would send bytes:

	Header	Address	Instruction	Length	Remote Activation Code A	Remote Activation Code B	Checksum
Manual	255 254	001	000	002	002	000	251
Zero	255 254	001	000	002	008	000	245
Reset	255 254	001	000	002	016	000	237
Abort	255 254	001	000	002	032	000	221
Start	255 254	001	000	002	064	000	189
End Deposition	255 254	001	000	002	128	000	125
Switch Crystal to backup	255 254	001	000	002	000	001	252
Shutter (A)	255 254	001	000	002	000	002	251
Shutter B	255 254	001	000	002	000	004	249

115. Send controller hardware configuration (Code #1)

Instructs the controller to send controller configuration data to the host computer. The following is a description of the configuration data:

Name	Length (bytes)	Message
Software Version	30	862 Software Version X.X.X

Source/Sensors	1	(2 or 4)			
I/O Ports	1	(1 to 4)			
Total 32 bytes					

Example: To instruct the controller to send the hardware configuration data the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	001	000	254

116. Delete a material (Code #5)

Instructs the controller to delete requested material. Material number range #1-99 (byte 0-98)

Example: To instruct the controller to delete material# 16 the computer would send:

Header	Address	Instruction	Length	Material (n-1)	Checksum
255 254	001	005	001	015	242

117. Send a material (Code #6)

Instructs the controller to send all the material parameters for specified material to the host computer. A description of the material parameter list is in the table below:

Parameter name	Len bytes	Byte Offset	Decimal Pt. Position	Range	Units
Material #	1	0	*	0-98 (n-1)	Material # 1-99
Material Name	12	1	*		
Thickness	3		3	0-999900	Å
Sensor Profile Name	12		*		
Sensor #	1		*	1-4	None
Crystal #	1		*	1-8	None
Source #	1		*	1-4	None
Pocket #	1		*	1-30	None
Material Density	2		2	80-9999	0.01 gm/cm3
Acoustic Impedance	2		2	400-9000	0.01 gm/cm2/sec
Tooling Factor	2		1	100-4999	0.1%
Proportional gain	2		*	0-9999	None
Integral Time constant	2		1	0-999	0.1 Seconds
Derivative Time constant	2		1	0-999	0.1 Seconds
Rise to Soak Time	2		*	0-35999	Seconds
Soak Power	2		1	0-999	0.1%
Soak Time	2		*	0-35999	Seconds
Soak Sweep Pattern	1		*	0-63	
Rise to Predeposit Time	2		*	0-35999	Seconds
Predeposit Power	2		1	0-999	0.1%
Predeposit Time	2		*	0-35999	Seconds
Predeposit Sweep Pattern	1		*	0-63	
Rate Establish Time	1		*	0-99	Seconds

STANDARD INTERFACE

Rate Establish Error %	2	1	0-999	0.1 Å/sec
Deposition Rate #1	2	1	0-9999	0.1 Å/sec
Deposition Rate #2	2	1	0-9999	0.1 Å/sec
Deposition Rate #3	2	1	0-9999	0.1 Å/sec
Deposition Rate #4	2	1	0-9999	0.1 Å/sec
Deposition Rate #5	2	1	0-9999	0.1 Å/sec
Rate Ramp Type	1	*	0 = KÅ	0.174360
Rate Ramp Type	1		1 = Disable	
			2 = Percent	
Ramp Start Thick. #1	3	3	0-999900	Å
Ramp Stop Thick #1	3	3	0-999900	Å
Ramp Start Thick. #2	3	3	0-999900	Å
Ramp Stop Thick #2	3	3	0-999900	Å
Ramp Start Thick. #3	3	3	0-999900	Å
Ramp Stop Thick #3	3	3	0-999900	Å
Ramp Start Thick. #4	3	3	0-999900	Å
Ramp Stop Thick #4	3	3	0-999900	Å
Deposition Sweep Pattern	1	*	0-63	
Time Setpoint	2	*	0-35999	Seconds
Feed Enabled	1	*	0 = disabled,	
			1 = enabled	
Ramp to Feed Time	2	*	0-35999	Seconds
Feed Power	2	1	0-999	0.1%
Feed Time	2	*	0-35999	Seconds
Feed Sweep Pattern	1	*	0-63	
Ramp to Idle Time	2	*	0-35999	Seconds
Idle Power	2	1	0-999	0.1%
Maximum Power	2	1	0-999	0.1%
Power Alarm Delay	1	*	0-99	Seconds
Minimum Power	2	1	0-999	0.1%
Rate Deviation Attention	2	1	0-999	0.1%
Rate Deviation Alarm	2	1	0-999	0.1%
Rate Deviation Abort	2	1	0-999	0.1%
Sample Dwell %	1	*	0-99	%
Sample Period	2	*	0-35999	Seconds
Crystal Marginal	1	*	0-99	%
Crystal Fail	1	*	1 = Halt	70
	•		3 = Disable	
			4 =	
			DisableTimePower	
			5 =TimePwr	
Dealum O	+	*	6 =Switch	Neg
Backup Sensor #	1		1-4	None
Backup Tooling Factor	2	1	100-4999	0.1%
Backup Crystal #	1	*	1-8	None
Crystal Switch Settling	2	*	0-240	Seconds
Reserved	18	·	N/A	
Total	150 b	ytes		

Note: Rate ramps values larger than 999,900 Å will be clipped to 999,900 Å

* - Indicates decimal point position is not applicable.

Format: Header, Address, Instruction=6, Length=1, Material #1-99 (0-98), Checksum.

Example: To instruct the controller to send the parameter list for material #10 the computer would send:

Header	Address	Instruction	Length	Material (n-1)	Checksum
255 254	001	006	001	009	239

118. Receive a material (Code #7)

Instructs the controller to enter all the incoming material parameters for material # n into memory. The parameters must be in the same order and format as the code 6 material parameter list table.

Format: Header, Address, Instruction=7, Length=150 (1 byte), 150 bytes parameter data, Checksum.

Example: To instruct the controller to receive a material the computer would send bytes:

				Parameter	
Header	Address	Instruction	Length	Data	Checksum
255 254	001	007	150	(150 bytes)	(1 byte)

119. Send material list (Code #8)

Instructs the controller to send a list of all material names in the order that they are stored in the controller. The material list consists of 12 character material names.

Example: To instruct the controller to send the material list the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	008	000	247

Since the 862 message length is limited to 249 bytes, the controller will return the material list in 7 messages, of 16 materials each. The first message will contain material names 1-16, the second message will contain material names 17-32 and so on.

120. Send process (Code #10)

Instructs the controller to send all the process parameters for process# n to the host computer. A description of the process parameter list is as follows:

Parameter Name	Length (bytes)	Decimal Pt. Position	Range	Units
Process #	1	*	0-98	Process # 1-99
Process name	12	*	Characters	None
Number of Layers	2	*	0-998	Number Layers 1- 999
Total	15 Bytes			

All of the layer data for process #n will follow the above message. Since the 862's message length is limited to 249 bytes, the controller will send the layer data in from one up to 63 separate messages depending on the number of layers in the process. Each message will contain from one to 16 layers. For example, if the process contains 250

layers, the controller will send the layer data in 10 messages. The first 19 messages will have 16 layers and the last message will have 12 layers. The format of the layer messages is as follows:

Parameter Name	Length (bytes)	Decimal Pt. Position	Range	Units
Message Number	1	*	1-17	Message number
Codeposit	1		1 = 00, 0 = 0ff	
Layer # n Thickness (A)	3	3	0-999900	Å
Layer # n Material # (A)	1	*	0-98 (n-1)	Material # 1-99
Layer # n Pocket Override (A)	1	*	0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk (A)	2	2	0-99.99	%
Layer # n Material #	1		0-98 (n-1)	Material # 1-99
Ratio Material B	3	3	0-999.9	%
Layer # n Pocket Override (B)	1		0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk (B)	2	2	0-99.99	%
total	16 Bytes			

The message number is included as a safeguard to insure that the all messages are received and are in order.

Example: To instruct the controller to send the process parameters for process #5 the computer would send:

Header	Address	Instruction	Length	Process	Checksum
255 254	001	010	001	004	240

121. Set Process Name (Code #11)

Instructs the controller to enter the incoming parameters of process # n into memory. A description of the process parameter list is as follows:

Parameter Name	Length (bytes)	Decimal Pt. Position	RS-232 Range	Units
Process #	1	*	0-98 (n-1)	Process # 1-99
Process Name	12	*	Character	None
	Total 13 bytes			

Format: Header, Address, Instruction=11, Length=13, 1 byte process#(0-98), 12 byte Process name(ASCII), Checksum.

Example:

					Process	Check
Header	Address	Instruction	Length	Process #	name	sum
255 254	001	011	013	(1 byte)	(12 bytes)	(1 byte)

To modify process layers you must use the insert, replace, and delete process layer instructions.

122. Delete process (Code #12)

Instructs the controller to delete process# n and its associated layers. Process number range 0-98

Example: To instruct the controller to delete process# 6 (RS-232 number is n-1) the computer would send:

Header	Address	Instruction	Length	Process	Checksum
255 254	001	012	001	005	237

123. Send process layer (Code #13)

Instructs the controller to send the process layer parameters for the specified process number and layer number to the host computer. A description of the process layer parameter list is as follows:

Parameter Name	Length (bytes)	Decimal Pt. Position	Range	Units
Process #	1	*	0-98 (n-1)	Process # 1-99, RS-232
Layer #	2	*	0-998 (n-1)	Layer # 1-999, RS-232
Codeposit	1		1 = 00, 0 = 0ff	
Layer # n Thickness (A)	3	3	0-999900	Å
Layer # n Material # (A)	1	*	0-98 (n-1)	Material # 1-99
Layer # n Pocket Override (A)	1	*	0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk (A)	2	2	0-99.99	%
Layer # n Material #	1		0-98 (n-1)	Material # 1-99
Ratio Material B	2	1	0-999.9	%
Layer # n Pocket Override (B)	1		0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk (B)	2		0-99.99	%
total	18 Bytes			

Format: Header, Address, Instruction=13, Length=3, 1 byte Process #, 2 byte Layer #, Checksum.

Example: To instruct the controller to send the process layer parameters for process #16, layer #6 the computer would send:

				Process		
Header	Address	Instruction	Length	#	Layer #	Checksum
255 254	001	013	003	015	000 005	219

124. Insert process layer (Code #14)

Instructs the controller to insert the incoming layer of the specified process in front of specified layer (adding the layer to the process). A description of the insert process layer parameter list is as follows:

Parameter Name	Length (bytes)	Decimal Pt. Position	Range	Units
Process #	1	*	0-98 (n-1)	Process # 1-99, RS-232
Layer #	2	*	0-998 (n-1)	Layer # 1-999, RS-232
Codeposit	1		1 = 00, 0 = 0ff	

STANDARD INTERFACE

Layer # n Thickness (A)	3	3	0-999900	Å
Layer # n Material # (A)	1	*	0-98 (n-1)	Material # 1-99
Layer # n Pocket Override (A)	1	*	0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk (A)	2	2	0-99.99	%
Layer # n Material # B	1		0-98 (n-1)	Material # 1-99
Ratio Material B	3	1	0-999.9	%
Layer # n Pocket Override B	1		0-30	0 = use material pocket, 1-30 Pocket #
Crosstalk B	2		0-99.99	%
Total	18 Bytes			

If all of the layers are defined then the controller will respond with and insufficient layer space error.

This code does not dynamically update the running process.

Example: To instruct the controller to insert the process layer parameters for process #3, layer #4, Thickness 250A, material #3 the computer would send:

Header	Address	Instruction	Length	Process	Layer	Parameters	Checksum
255 254	001	014	018	002	000 003	(15 bytes)	(1 byte)

125. Set process layer (Code #15)

Instructs the controller to enter the incoming process layer parameters into specified process and specified layer. A description of the process layer parameter list is given above.

Writing a layer to an undefined process results in an error. To define a process use the Receive Process instruction.

If the process is the current process, and codeposit and material numbers aren't changed for the layer, then thickness/ratio modifications will be immediately applied to the running process. No other modifications will be dynamically applied to the running process.

Example: To instruct the controller to insert the process layer parameters for process #3, layer #4, Thickness 250A, material #3, and pocket override #1 the computer would send:

Header	Address	Instruction	Length	Process	Layer	Parameters	Checksum
255 254	001	015	018	002	000 003	(15 bytes)	(1 byte)

126. Delete process layer (Code #16)

Instructs the controller to delete specified later from the specified process.

Format: Header, Address, Instruction=16, Length=3, 1 byte Process #(0-98), 2 byte Layer #(0-998), Checksum.

Example: To instruct the controller to delete the process #3, layer #4 the computer would send:

Header	Address	Instruction	Length	Process (n-1)		Checksum
255 254	001	016	003	002	000 003	231

127. Send a process list (Code #17)

Instructs the controller to send all process names in the order that they are stored in the controller. The process list consists of 99 12-character process names.

Example: To instruct the controller to send the process list the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	017	000	238

Since the 862's message length is limited to 249 bytes, the controller will send the process names in five separate messages. The first four messages will each contain 20 names and the last message will contain 19 names.

128. Send Sensor Profile List (Code #18)

Instructs the controller to send all Sensor Profile names in the order that they are stored in the controller. The Sensor Profile list consists of 25 12-character process names.

Example: To instruct the controller to send the Sensor Profile list the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	018	000	237

Since the 862's message length is limited to 249 bytes, the controller will send the process names in five separate messages. The first message will each contain 20 names and the last message will contain 5 names.

129. Send Sensor Profile (Code #19)

Instructs the controller to send Sensor Profile

Example: To instruct the controller to send the Sensor Profile #1 the computer would send:

Header	Address	Instruction	Length	Profile #	Checksum
255 254	001	019	001	001	237

Parameter Name	Length (bytes)	Decimal Pt. Position	Range	Units
Sensor Profile #	1	*	1-25	Process # 1-25, RS-232
Sensor Profile Name	12	*		ascii Characters
Tooling Factor % #1	2	1		10 - 499.9 (* 10 in message)

STANDARD INTERFACE

Weight % #1	2	1		10 - 499.9 (* 10 in message)
Primary Mode #1	1	*		0 = No, 1 = Yes
Crystal Fail #1	1	*		Halt = 1, Disable = 3, Disable Time Power = 4, Time Power = 5, Switch = 6
Crystal #1	1	*	1 - 8	
Backup Sensor #1	1	*	0 - 4	
Backup Crystal #1	1	*	0 - 8	
Tooling Factor % #2	2	1		10 - 499.9 (* 10 in message)
Weight % #2	2	1		10 - 499.9 (* 10 in message)
Primary Mode #2	1	*		0 = No, 1 = Yes
Crystal Fail #2	1	*		Halt = 1, Disable = 3, Disable Time Power = 4, Time Power = 5, Switch = 6
Crystal #2	1	*	1 - 8	
Backup Sensor #2	1	*	0 - 4	
Backup Crystal #2	1	*	0 - 8	
Tooling Factor % #3	2	1		10 - 499.9 (* 10 in message)
Weight % #3	2	1		10 - 499.9 (* 10 in message)
Primary Mode #3	1	*		0 = No, 1 = Yes
Crystal Fail #3	1	*		Halt = 1, Disable = 3, Disable Time Power = 4, Time Power = 5, Switch = 6
Crystal #3	1	*	1 - 8	
Backup Sensor #3	1	*	0 - 4	
Backup Crystal #3	1	*	0 - 8	
Tooling Factor % #4	2	1		10 - 499.9 (* 10 in message)
Weight % #4	2	1		10 - 499.9 (* 10 in message)
Primary Mode #4	1	*		0 = No, 1 = Yes
Crystal Fail #4	1	*		Halt = 1, Disable = 3, Disable Time Power = 4, Time Power = 5, Switch = 6
Crystal #4	1	*	1 - 8	
Backup Sensor #4	1	*	0 - 4	
Backup Crystal #4	1	*	0 - 8	
Total	49 Bytes			

130. Receive Sensor Profile (Code #20)

Instructs the controller to receive Sensor Profile

Example: To instruct the controller to receive a Sensor Profile the computer would send:

Header	Address	Instruction	Length	Parameters	Checksum
255 254	001	019	049	49 Bytes	1 byte

Use the parameters from code #19

131. Delete Sensor Profile (Code #21)

Instructs the controller to delete Sensor Profile # n. Process number range 1-25

Example: To instruct the controller to delete Sensor Profile #1 the computer would send:

Header	Address	Instruction	Length	Profile	Checksum
255 254	001	021	001	001	232

132. Send controller status (Code #28)

Instructs the controller to send the controller status data list. A description of the controller status data list is as follows:

	Length	_
Parameter Name	(bytes)	Range
Controller Status 1	1	bit 0 = Ready Mode
		bit 1 = Manual Mode bit 2 = Time Power Mode
		bit 3 = Hold Mode
		bit $4 = \text{Halt Mode}$
		bit 5 = Abort Mode
		bit 6 = Power Control Mode
		bit 7 = In Process
Controller status 2	1	bit 0: resume process
		bit 1: simulate mode
		bit 2: last layer of process
		bit 3: Material A Time setpoint
		bit 4: Material B Time setpoint
Process state:	1	0 - Initializing
		1 - Process Ready
		2 - Start Layer
		3 - Change Crystal
		4 - Change Pocket
		5 - Set Soak Sweep
		6 - Layer Ready
		7 - Rise and Hold
		8 - Set Deposition Sweep
		9 - Establish Rate
		10 - Shutter Delay
		11 - Deposit
		12 - Post-Deposit
		13 - Layer Complete
		14 - Process Complete
		15 - Process Resume
Material A state	1	0 - Initializing
		1 - MaterialReady
		2 - StartMaterial
		3 - ChangePocket

4 - ChangeCrystal 5 - SetSoakSweep	
6 - ReadyForRise,	
7 - SoakRise	
8 - SoakHold	
9 - SetPredepositSweep	
10 - PredepositRise	
11 - PredepositHold 12 - SetDepositionSweep	
13 - EstablishRate	
14 - ShutterDelay	
15 - Deposit1	
16 - RateRamp1	
17 - Deposit2	
18 - RateRamp2	
19 - Deposit3	
20 - RateRamp3	
21 - Deposit4	
22 - RateRamp4	
23 - Deposit5	
24 - SetFeedSweep	
25 - RampToFeed	
26 - Feed	
27 - RampToldle	
28 - MaterialComplete	
29 - MaterialResume	
Material B state 1 If Co-dep same states as material A	
If no Co-dep then 255	
Discrete Input Register 11bit 0 = Input #1,8 (0=False, 1=True)	
Discrete Input Register 2 1 bit 0 = Input #9,16 (0=False, 1=True)	
Discrete Output Register 11bit 0 = Output #1,8 (0=False, 1=True)	
Discrete Output Register 21bit 0 = Output #9,16 (0=False, 1=True)	
Abort Process Errors 1 bit 6 = Max Rate&Min Pwr	
bit 7 = Min Rate&Max Pwr	
Alarm 1 Errors 1 bit 3 = Crystal Fail, Process Halted	
bit 4 = Rate Establish Error	
Alarm 2 Errors 1 bit 3 = Sound Alarm Action	
bit 4 = Rate Deviation Alarm	
bit 5 = Crystal Fail, Time Power Mode	
bit 7 = source fault	
Alert Errors 1 bit 3 = Sound Alert Action	
bit 4 = Minimum Power Alert	
bit 5 = Maximum Power Alert	
bit 6 = Rate Deviation Alert	
bit 7 = Crystal Marginal	
Attention 1 Errors 1 bit 0 = Process Complete	
bit 1 = Minimum Power Attention	
bit 2 = Maximum Power Attention	
bit 4 = Crystal Marginal&In Process	
bit 5 = Crystal Fail&! In Process	
bit 6 = Crystal Marginal&In Process, Switch	
bit 7 = Crystal Fail&In Process, Switch	
Attention 2 Errors 1 bit 3 = Manual Crystal Change	
Attention 2 Errors 1 bit 3 = Manual Crystal Change	
bit 4 = Resume Process	

	bit 6 = Manual Pocket Change bit 7 = Pause on Layer Complete
Total 15 bytes	

Format: Header, Address, Instruction=28, Length=0, Checksum

Example: To instruct the controller to send the controller status the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	028	000	227

133. Start process (Code #29)

Instructs the controller to start the specified process from specified layer.

Format: Header, Address, Instruction=29, Length=3, Process #(0-98) 1byte, Starting layer #(1-999) 2 bytes, Checksum.

Example: To instruct the controller to start process # 5 on layer # 10 the computer would send:

Header	Address	Instruction	Length	Process (n-1)	Layer	Check sum
255 254	001	029	003	004	000 009	210

134. Initiate Automatic Data Logging (Code #31)

This operation allows the computer to setup the 862 to automatically output selected values to the RS232 port every at the rate that is set in Setup – Utility - Data Points/Minute. A "stop" command must be sent to stop the 862 from sending data.

The values sent are determined by the bit value of the message byte in the data logging instruction message.

Byte #	Bit #	Description	Length (bytes)	Format	Units
0	0	Process Number	1	Integer	None
	1	Layer Number	3	String	None
	2	Time to Go	7	String	Seconds
	3	Material A	1	Integer	0 - not available, otherwise 1 - 99
	4	Material B	1	Integer	0 - not available, otherwise 1 - 99
1	0	Power (A)	4	String	%
	1	Thickness (A)	5	String	KÅ
	2	Deposition rate (A)	4	String	Å/sec
	3	Rate deviation (A)	4	String	%
	4	Source Number (A)	1	Integer	None
	5	Pocket (A)	1	Integer	None
	6	Sensors in use (A)	1	Integer	Bit map, least bit = sensor 1
2	0	Power (B)	4	String	%
	1	Thickness (B)	5	String	KÅ
	2	Deposition rate (B)	4	String	Å/sec
	3	Rate deviation (B)	4	String	%
	4	Source Number (B)	1	Integer	None
	5	Pocket (B)	1	Integer	None

STANDARD INTERFACE

	6	Sensors in use (B)	1	Integer	Bit map, least bit = sensor 1
3	0	Sensor 1 Crystal health	2	String	%
1		Sensor 1 Frequency	Sensor 1 Frequency 4		Hz, frequency * 100, set to 0 if not yet calculated or invalid
	2	Sensor 1 Crystal	1	Integer	None
	3	Sensor 1 Thickness KA, unaveraged	5	String	КÅ
	4	Sensor 2 Crystal health	2	String	%
	5	Sensor 2 Frequency	4	Integer	Hz, frequency * 100, set to 0 if not yet calculated or invalid
	6	Sensor 2 Crystal	1	Integer	None
	7	Sensor 2 Thickness KA, unaveraged	5	String	КÅ
4	0	Sensor 3 Crystal health	2	String	%
	1	Sensor 3 Frequency	4	Integer	Hz, frequency * 100, set to 0 if not yet calculated or invalid
	2	Sensor 3 Crystal	1	Integer	None
	3	Sensor 3 Thickness KA, unaveraged	5	String	КÅ
	4	Sensor 4 Crystal health	2	String	%
	5	Sensor 4 Frequency	4	Integer	Hz, frequency * 100, set to 0 if not yet calculated or invalid
	6	Sensor 4 Crystal	1	Integer	None
	7	Sensor 4 Thickness KA, unaveraged	5	String	КÅ

All values are in ASCII format including decimal points or colons.

Example: to instruct the 862 to output Process Number and Time to Go the computer would send the following message:

Header	Address	Instruction	Length	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Checksum
255 254	001	031	005	005	000	000	000	000	214

Data logging is stopped by sending the following message:

Header	Address	Instruction	Length	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Checksum
255 254	001	031	005	000	000	000	000	000	219

135. Send Process Log Directory (Code #36)

Instructs the controller to send the process log directory to the host computer. The process log directory consists of 16 individual process logs. The data format of a process log is listed in the following table:

Parameter Name	Length (bytes)	RS-232 Range	Units
Process Log Name	12	All ASCII Characters	
Process Run Number	2	1-9999	
Starting Time	3	00:00:00-23:59:59	HH:MM:SS
Starting Date	3	01/01/00-12/31/99	MM:DD:YY
Completion Time	3	00:00:00-23:59:59	HH:MM:SS
Completion Status	1	0=Normal, 1=Aborted	

STANDARD INTERFACE

Data Points/Minute	1	38=30ppm, 39=60ppm, 40=120ppm, 41=300ppm, 42=600ppm, 255=other	
Starting Layer Number	2	0-999	Layer # 1-999
Ending Layer Number	2	0-999	Layer # 1-999

Each byte in the time and date data is an integer value representing hour, minute, second, month, day, or year. The process run number and layer numbers are 2-byte integers.

If the first byte of the process name of any process log is equal to 255 then that log is considered blank.

Since the 862's message length is limited to 249 bytes, the controller will send the process log directory data in two separate 232 byte messages. The first message will contain the first eight logs and the second message will contain the last eight logs.

Example: To instruct the controller to send the process log directory the computer would send:

Header	Address	Instruction	Length	Checksum
255 254	001	036	000	219

136. Send run-time value (Code #40)

Instructs the controller to send one run-time value base on the value# received.

	Header	Address	Instruction	Length	Value#	Checksum
Process number	255 254	001	040	001	001	213
Layer number	255 254	001	040	001	002	212
Time to go	255 254	001	040	001	003	211
Run id	255 254	001	040	001	004	210

A description of the run-time value list is as follows:

Value#	Value Name	Length (bytes)	Format	Range	Units
1	Process number	1	Integer	0-99	
2	Layer number	3	String	0-999	
3	Time to go	7	String		Seconds
4	Run id	2	Integer	0-999	

137. Send Process run-time values (Code #41)

Instructs the controller to send process run-time values.

Header	Address	Instruction	Length	Checksum
255 254	001	041	000	214

A description of the run-time value list is as follows:

Parameter name	Length (bytes)	Format	Range	Units
Process #	1	Integer	0-98 (n-1) Film is 99, 255 is no process loaded	
Layer number	3	String	" 0"-"999"	3 ascii characters

Time to go	7	String		
Run id	2	Integer	0-999	

138. Send Material Run Time Value (Code #42)

Send one of the values listed below

	Header	Address	Instruction	Length	Material	Parameter	Checksum
Process number	255 254	001	042	002	A = 0 B = 1		

A description of the run-time value list is as follows:

Parameter name	ID#	Decimal Pt. Position	Range	Units
Material #	1	*	0-98 (n-1)	Material # 1-99
Power	2	1	0-999	0.1%
Thickness	3	3	0-999900	Å
Deposition Rate	4	1	0-9999	0.1 Å/sec
Rate deviation	5		String	%
Active source number	6		1-4	
Active pocket number	7		1-30	0 if pocket not yet set
Sensor	8		if bit 1 (LSB) is set to 1, sensor 1 is in use for the indicated material	

139. Send Material Run Time Values (Code #43)

Sends all values in code #42 from 1 to 8

Example: To instruct the controller to send the material A run-time value list the computer would send:

				Material	
Header	Address	Instruction	Length	A = 0 B = 1	Checksum
255 254	001	043	001	000	211

140. Send Sensor Run Time Value (Code #44)

Instructs the controller to send a sensor run-time value one time. A description of the runtime value list is as follows:

Value Name	ID	Length (bytes)	Format	Units
Crystal health	1	2	String	%
Frequency	2	10	String	Hz

The string values are in ASCII format, including decimal points and colons.

Example: To instruct the controller to send the run-time value of frequency for sensor 1 the computer would send:

Header	Address	Instruction	Length	Sensor	ID	Checksum
255 254	001	044	002	001	002	225

141. Send Sensor Run Time Values (Code #45)

Sends all the values in Instruction code #44 for a specified sensor.

Length=1, byte 0: sensor (1-4)

Sends value 1 then value 2

Example: To instruct the controller to send the sensor 1 run-time value list the computer would send:

Header	Address	Instruction	Length	Sensor (1-4)	Checksum
255 254	001	045	001	001	208

142. Send All Sensor Run Time Values (Code #46)

Instructs the controller to send all sensor run-time value one time. A description of the runtime value list is as follows:

Value Name	ID	Length (bytes)	Format	Units
Sensor 1 Crystal health	1	2	String	%
Sensor 1 Frequency	2	10	String	Hz
Sensor 2 Crystal health	3	2	String	%
Sensor 2 Frequency	4	10	String	Hz
Sensor 3 Crystal health	5	2	String	%
Sensor 3 Frequency	6	10	String	Hz
Sensor 4 Crystal health	7	2	String	%
Sensor 4 Frequency	8	10	String	Hz

Example: To instruct the controller to send all sensor run-time values the computer would send:

Header	Address	Instruction	Length	Checksum	
255 254	001	046	000	209	

143. Send System run-time value (Code #47)

Input parameter is a single byte (value id) that indicates the value to retrieve.

Value Id 0: Data Points / minute. The 862 sends back a message with 3 bytes: Value Id 0 in a single byte, then data points / minute in a 2-byte integer (30 - 600)

Value Id 1: System State. The 862 sends back a message with 2 bytes: Value Id 0 in a single byte, then

Instructs the controller to send the run-time value one time.

A description of the run-time value list is as follows

Value Name	ID	Length (bytes)	Form	Units
			at	
Data Points / minute	0	2	Integer	30 - 600
System State	1	1	Integer	Initializing = 0
				Ready = 1

	Reset = 2
	Halted = 3
	Aborted = 4
	Running = 5
	Process Complete = 6

The string values are in ASCII format, including decimal points and colons.

Example: To instruct the controller to send the run-time value list for System State the computer would send:

Header	Address	Instruction	Length	ID value	Checksum
255 254	001	047	001	001	206

144. Get Value Updates (Code #49)

Instructs the 862 to send a message with an update to the specified value(s) when that value changes. Request includes 4 Select bytes specifying which bitmask value(s) to send.

(2 of the bytes are currently unused and for expandability)

Byte/Bit and its associated Value (Byte 0 is first Select byte sent in the message, Bit 0 is LSB)

To turn off all updates set all select bytes to 0.

A description of the value list is as follows	А	description	n of the	value	list is	as follows
---	---	-------------	----------	-------	---------	------------

Byte #	Bit #	Description	Length (bytes)	Format	Units
0	0	Material A Target Rate	4	String	A/sec, The rate is set to when ramping is occurring to avoid overly frequent updates.
	1	Material B Target Rate	4	String	A/sec
	2	Material A Target Thickness	5	String	КА
	3	Material B Target Thickness	5	String	КА
	4	Material A Final Layer Thickness (unaveraged)	5	String	КА
	5	Material B Final Layer Thickness (unaveraged)	5	String	КА
1	0	Material A Start Deposit Power	4	String	%
	1	Material B Start Deposit Power	4	String	%
	2	Material A End Deposit Power	4	String	%
	3	Material B End Deposit Power	4	String	%
	4	Material A Deposit 1 Target Rate	4	String	A/sec
	5	Material B Deposit 1 Target Rate	4	String	A/sec

The update messages sent from the 862 consist of: 4 bytes containing the Select Byte/Bit of the value sent, then the value

145. Select Process (Code #51)

Instructs the controller to select process

It has two data bytes:

Byte 0 = "Process or Film": 1 = Process, 0 = Film.

Byte 1 = process/film number. Process/film number range #1-99 (byte 0-98)

Example: To instruct the controller to select film# 16 the computer would send:

Header	Address	Instruction	Length	Process or Film	Process or Film (n-1)	Checksum
255 254	001	051	002	000	015	187

146. Terminating Connection (Code #248)

Terminating Connection for graceful shutdown, no data)

Header	Address	Instruction	Length	Checksum
255 254	001	248	000	007

147. Ping (Code #249)

Ping - Returns received message OK

Header	Address	Instruction	Length	Checksum
255 254	001	249	000	006

10 TROUBLE SHOOTING

Symptom	Possible Cause
Unit blows line fuse.	a) Incorrect fuse size.b) Shorted transformer or filter capacitor.
Front Panel display never illuminates.	a) Blown fuse.
"Crystal Failure" message flashes with selected sensor properly connected.	a) Defective cable or cables.b) Defective or overloaded sensor crystal.c) Bad Oscillator unit.
No control voltage while monitoring output of selected Source/Sensor bd.	a) Cable/connector miswired or shorted.(Source/Sensor board)b) Bad Source/Sensor board.
Unit does not retain programmed data in memory.	a) Bad Main Processor board.
The unit fails to activate externally controlled devices (Shutters, solenoids, etc.)	a) Faulty Relay (Discrete I/O board) b) Bad Discrete I/O board.
Unable to remotely control the unit via Discrete I/O inputs.	a) Improperly wired cable/connector.b) Inputs not properly grounded.c) Bad Discrete I/O board.
Unable to manually control the source power through the Remote Power Handset.	 a) Controller is not in Manual mode. b) Controller is in Abort mode. c) Faulty Remote Power Handset. d) Bad connection from the Manual Control connector to the Main bd.

11 MATERIAL TABLE

		Melting Point	Bulk Density,	Acoustic Impedance	Acoustic Impedance	Recommended Crucible		
Element	Symbol	(C°)	g/cm ³	g/cm2	Ratio (z)	Liner(s)	Sweep	Remarks
								Alloys and wets
								tungsten;
Aluminum	Al	660	2.700	8.170	1.081	Re-infiltrated	none	stranded superior.
Aluminum								
Antimonide	AlSb	1080	4.300	8.830	1.000			
Aluminum								
Arsenide	AlAs	1600	3.700	8.830	1.000			
Aluminum								
Bromide	AlBr₃	97	2.640	8.830	1.000	Graphite		
Aluminum								
Carbide	Al ₄ C ₃	2100	2.360	8.830	1.000			Sublimes.
Aluminum								
Floride	AlF₃	2191	2.880	8.830	1.000	Graphite		Sublimes.
								Decomposes.
								Reactive evap Al
Aluminum								in 10 ³ N ₂ with glow
Nitride	AIN	2200	3.260	8.830	1.000			discharge.
Aluminum								
Oxide						Graphite, Re-		
(Alumina)	Al ₂ O ₃	2045	3.970	26.280	0.336	infiltrated, Mo	large	
Aluminum								
Phosphide	AIP	2000	2.420	8.830	1.000			
								Toxic. Film
								structure is rate
								dependent Use
Antimony	Sb	631	6.620	11.490	0.768			Mo E.B. Liner.
								Toxic. Sublimes.
								Decomposes on
								W. Use low rate.
Antimony								Z. Physik 165,202
Oxide	Sb₂O₃	656	5.820	8.830	1.000	BN, Al₂O₃		(1961).

MATERIAL TABLE

								Taula
Antimony								Toxic. Stoichiometry
Selenide	Sb₂Se₃	629	6.500	4.722	1.870	Carbon		variable.
Antimony	0.02003	010	0.000		2.070			Toxic. No
Sulfide	Sb₂S₃	550	4.120	8.830	1.000	Al ₂ O ₃		decomposition.
Antimony								Toxic. Deomposes
Telluride	Sb ₂ Te ₃	629	6.500	8.830	1.000	Carbon		over 750 °C.
								Toxic. Sublimes
						Al₂O₃, BeO, Vit		rapidly at low
Arsenic	As	814	5.730	9.140	0.966	Carbon		temperature.
Arsenic								
Selenide	As₂Se₃	360	4.750	8.830	1.000	Al₂O₃, Quartz		
Arsenic Sulfide	AS_2S_3	300	3.430	8.830	1.000	Мо		
Arsenic								
Telluride	AS₂Te₃	362	5.000	8.830	1.000			
								Toxic. Wets w/o
D a still state	Do	705	2 5 0 0	4 200	2 4 0 2			alloying, reacts
Barium Barium	Ва	725	3.500	4.200	2.102			with ceramics.
Chloride	BaCl₂	961	3.860	8.830	1.000			Use gentle preheat to outgas.
Barium	Daciz	901	5.800	8.830	1.000			Sublimes. Denisty
Fluoride	BAF₂	1280	4.890	9.811	0.900			rate dependent.
Huohue	Dr ti 2	1200	4.050	5.011	0.500			Decomposes
Barium Oxide	BaO	1923	5.720	8.830	1.000	Al ₂ O ₃		slightly.
Barium Sulfide	BaS	1200			1.000	2 - 5		Sublimes.
Barium Suitide	DdS	1200	4.250	8.830	1.000			Decomposes,
								yields free Ba;
Barium								sputter or
Titanate	BaTiO₃	1620	5.850	27.594	0.320			coevaporate.
	-					Vitreous		Powder very toxic.
Beryllium	Ве	1283	1.850	16.260	0.543	carbon		Wets W/Mo/Ta.
Beryllium								
Chloride	BeCl₂	440	1.900	8.830	1.000			Very Toxic.
Beryllium								Very Toxic,
Fluoride	BeF₂	800	1.990	8.830	1.000			sublimes.
								Powder very toxic
Beryllium	D-O	2575	2.010	0.000	1 000		1	No decomposition
Oxide	BeO	2575	3.010	8.830	1.000		large	from EB.
Bismuth	Bi	271	9.800	11.180	0.790	Al₂O₃, Vit Carbon		Vapors are toxic. High resistivity.
Distriction	51	271	5.000	11.100	0.750	Carbon		Toxic, sublimes.
Bismuth								App. Opt. 18,105
Fluoride	BiF₃	727	5.320	8.830	1.000	Graphite		(1979).
	-							Vapors are
								toxic.JVST 12, 63
Bismuth Oxide	Bi ₂ O ₃	811	8.900	8.830	1.000			(1975).
Bismuth								
Sulfide	Bi ₂ S ₃	685	7.390	8.830	1.000			Toxic.
								Toxic. Deomposes
								Sputter or
Bismuth								coevaporate in
Titanate	Bi ₂ Ti ₂ O ₇	875	9.030	8.830	1.000			10 ² O ₂ .
Daran	Б	2100	2 5 4 0	22 700	0.000	Vitreous		Material explodes
Boron	В	2100	2.540	22.700	0.389	carbon		with rapid cooling. Similar to
Boron Carbide	B ₄ C	2350	2.520	8.830	1.000			chromium.
DOLOH CUIDING	D4C	2550	2.520	0.830	1.000		1	chronnum.

Boron Oxide	B ₂ O ₃	460	2.460	8.830	1.000			
Boron Sulfide	B_2S_3	310	1.550	8.830	1.000	Graphite		
C. dui un	Cd	224	0.640	12.050	0.000			Poisons vacuum systems, low sticking coefficient. Use
Cadmium	Cd	321	8.640	12.950	0.682	Al ₂ O ₃ Quartz		MO E.B. Liner.
Cadmium Antimonide	CdSb	456	6.920	8.830	1.000			
Cadmium Arsenide	Cd₃As₂	721	6.210	8.830	1.000	Quartz		Toxic.
Cadmium Bromide	CdBr₂	567	5.190	8.830	1.000			Sublimes.
Cadmium Chloride	CdCl₂	960	4.050	8.830	1.000			Sublimes.
Cadmium	CdE	1100	C C 40	0.020	1 000			
Fluoride Cadmium Iodide	CdF ₂ CdI ₂	1100 387	6.640	8.830	1.000			
Cadmium		387	5.670	8.830	1.000			
Oxide Cadmium	CdO	1430	8.150	8.830	1.000			Disproportionates
Selenide	CdSe	1351	5.790	8.830	1.000	Al ₂ O ₃	large	Toxic, sublimes.
Cadmium Sulfide	CdS	1750	4.830	8.660	1.020			Sublimes. Sticking coeff. Affected by sub temp. Comp. variable JVST 12,188 (1975).
Cadmium Telluride	CdTe	1041	5.850	9.010	0.980			Toxic. Stoichiometry depends on substrate temp. JVST 8,412 (1971) Flammable,
Calcium Calcium Fluoride	Ca CaF2	845	1.550	3.370	2.620	Al₂O₃ Quartz Quartz		sublimes. Corrodes in air. Optic 18,59 (1961). Rate control important. Use gentle preheat to Outgas.
								Forms volatile oxides with W
Calcium Oxide	CaO	2580	3.340	8.830	1.000	ZrO₂		and MO.
Calcium Silicate	CaO SiO₂	1540	2.900	8.830	1.000	Quartz		
Calcium Sulfide	CaS	Subl.	2.500	8.830	1.000			Decomposes.
Calcium Tungstate	CaWO₄	1620	6.060	8.830	1.000			
Carbon (Diamond)	с	3727	3.520	40.140	0.220		large	
Carbon (Graphite)	с		2.250	2.710	3.258			Sublimes. EB preferred, Arc evaporat. Poor film adhesion.

MATERIAL TABLE

	_					Al ₂ O ₃ , BeO, Vit		Films oxidize
Cerium	Ce	795	6.670	10.267	0.860	Carbon		easily.
Cerium (III)	CoF	1460	6.460	0.020	4 000			Use gentle
Fluoride	CeF₃	1460	6.160	8.830	1.000			preheat to outgas. Sublimes. Use
								250°C sub. Temp.
								Reacts with W. J
Cerium (IV)								Opt Soc Am
Oxide	CeO ₂	2600	7.130	8.830	1.000			48,324 (1958).
								Alloys with
								source. J. Opt.
Conium Quide	60.0	1 C 0 1	C 000	21 527	0.410			Soc.Am 48,324
Cerium Oxide	Ce ₂ O ₃	1691	6.890	21.537	0.410			(1958).
Cesium	Cs	29	1.890	8.830	1.000	Quartz		Flammable.
Cesium Bromide	CsBr	636	4.440	5.134	1.720			
Cesium	C3DI	030	4.440	5.134	1.720			
Chloride	CsCl	646	3.990	8.830	1.000			Hygroscopic.
Cesium								70 1
Fluoride	CsF	626	4.110	8.830	1.000			
Cesium		I T	Т					
Hydrozide	CsOH	272	3.670	8.830	1.000			
Cesium Iodide	Csl	621	4.510	2.993	2.950	Pt. Quartz		
						Re-infiltrated,		
						Vitreous		Sublimes. High
Chromium	Cr	1875	7.200	28.950	0.305	carbon	large	rates possible.
Chromium Boride	CrB	2760	6.170	8.830	1.000			
Chromium	CID	2700	0.170	8.850	1.000			
Bromide	CrBr₂	842	4.360	8.830	1.000			
Chromium	_							
Chloride	CrCl₂	824	2.880	8.830	1.000			Sublimes easily.
								Disproportionates
								to lower oxides,
Chromium Oxide	Cr₂O₃	2425	F 210	0 020	1 000			reoxidizes @ 600°C in air.
Chromium		2435	5.210	8.830	1.000			buu c m air.
Sillicide	Cr₃Si₂	1710	6.510	8.830	1.000			
Chruomium	- 5-2		5.010	0.000	2.000			
Carbide	Cr₃C₂	1890	6.680	8.830	1.000			
								Alloys with
Cobalt	Со	1495	8.710	25.740	0.343	Al ₂ O ₃	medium	refractory metals.
Cobalt	CoPr	670	4 0 1 0	0.000	1 000			Sublimas
Bromide Cobalt	CoBr₂	678	4.910	8.830	1.000			Sublimes.
Cobait Chloride	CoCl₂	724	3.370	8.830	1.000			Sublimes.
	00012	727	3.370	5.550	1.000			Films do not
								adhere well. Use
								intermediate Cr
						Graphite, Re-	none or	layer, O₂ free Cu
Copper	Cu	1083	8.930	20.210	0.437	infiltrated	small	req'd.
Copper (I)	CURE	1420	F (00)	12 000	0.000			
Sulfide (alpha)	Cu2S	1130	5.600	12.800	0.690			
Copper (I) Sulfide (beta)	Cu2S		5.800	13.180	0.670			
Copper (II)	0425		5.000	13.100	0.070			
Sulfide	CuS	1113	4.600	10.770	0.820			Sublimes.

	1	r						1
Copper Chloride	CuCl	431	4.190	8.830	1.000			
Copper Oxide	Cu ₂ O	1235	6.000	8.830	1.000	Al ₂ O ₃		Sublimes. Evaporate in 10^2 to 10^4 of O_2 ; J. Electrochem. Soc. 110,119 (1967).
Cryolite	Na₃AIF ₆	1000	2.900	8.830	1.000	Vit. Carbon		Large chunks reduce spitting. Little decomposition. App. Opt. 15, 1969 (1976).
Dysprosium	Dy	1407	8.540	14.720	0.600			Flammable.
Dysprosium Oxide	Dy ₂ O ₃	2340	7.810	8.830	1.000			Loses oxygen.
Erbium	Er	1461	9.050	11.930	0.740			Sublimes.
Erbium Fluoride	ErF₃	1350	7.810	8.830	1.000			JVST A3 (6), 2320.
Erbium Oxide	Er₂O₃	2400	8.640	8.830	1.000			Loses oxygen.
Europium	Eu	826	5.244	8.830	1.000	Al ₂ O ₃		Flammable, sublimes. Low tantalum solubility.
Europlum Fluoride	EuF₂	1200	6 500	0 0 0 0	1 000			
Europlum Oxide	Eu ₂ O ₃	1390 2056	6.500 7.420	8.830 8.830	1.000	ThO₂		Loses Oxygen; films clear and hard.
Europlum Sulfide	EuS		5.750	8.830	1.000			
Gadolinium	Gd	1312	7.890	13.180	0.670	Al ₂ O ₃		High Ta solubility. Flammable.
Gadolinium Oxide	Gd₂O₃	2310	7.410	8.830	1.000			Loses oxygen.
Gallium	Ga	30	5.930	14.890	0.593	Al₂O₃		Alloys with refractory metals. Use EB gun.
Gallium Antimonide	GaSb	710	5.600	8.830	1.000			Flash evaporate.
Gallium Arsenide	GaAs	1238	5.310	5.550	1.591	Carbon		Flash evaporate.
Gallium Nitride	GaN	800	6.100	8.830	1.000	Al ₂ O ₃		Sublimes. Evaporate Ga in 10 ³ N ₂ .
Gallium Oxide (β)	Ga₂O₃	1900	5.880	8.830	1.000			Loses oxygen.
Gallium Phosphide	GaP	1348	4.100	8.830	1.000	Quartz		Decomposes. Vapor mostly P.
Germanium	Ge	937	5.350	17.110	0.516	Re-infiltrated Al_2O_3	medium	
Germanium Oxide	GeO2	1086	6.240	8.830	1.000	Al ₂ O ₃		Similar to SiO, film predominately GeO.
Germanium Telluride	GeTe	725	6.200	8.830	1.000	Quartz, Al₂O₃		

Glass, Schott 8329	_		2.200	8.830	1.000			Evaporable alkali glass. Melt in air before evaporating.
0020			2.200	0.000	1.000	Re-infiltrated	none or	
Gold	Au	1962	19.300	23.180	0.381	Mo, W	small	
Hafnium	Hf	2222	13.090	24.530	0.360		medium	
Hafnium								
Boride	HfB₂	3250	10.500	8.830	1.000			
Hafnium Carbide	HfC	3890	12.200	8.830	1.000			Sublimes.
Hafnium Nitride	HfN	3305	13.800	8.830	1.000			
Nithue	1111N	3303	13.800	8.830	1.000	Mo, Re-		Film HfO. App.
Hafnium Oxide	HfO₂	2811	9.690	8.830	1.000	infiltrated	large	Opt. Apr. 1977.
Hafnium		1600	0.000	0.000	4 000			
Sillicide	HfSi₂	1680	8.020	8.830	1.000			
Holnium	Но	1461	8.800	15.200	0.581			Sublimes.
Holnium Fluoride	HoF₃	1143	7.640	8.830	1.000	Quartz		
Fluoride	1101 3	1145	7.040	0.030	1.000	Quartz		Loses Oxygen.
Holnium Oxide	Ho₂O₃	2360	8.360	8.830	1.000			App. Opt. 16,439.
inconel	Ni/Cr/Fe	1425	8.500	26.758	0.330			Use fine wire prewrapped on W. Low rate req'd for smooth films.
Indium	In	157	7.310	10.510	0.840	Mo, Graphite	small	Wets W and Cu
Indium (I) Sulfide	In₂S	653	5.870	8.830	1.000	Graphite		
Indium (III) Sulfide	In₂S₃	1050	4.450	8.830	1.000	Graphite		Sublimes. Film In ₂ S.
Indium Antimonide	InSb	535	5.760	11.480	0.769			Toxic. Decomposes; sputter preferred; or coevaporate from 2 sources; flash.
Indium Oxide	In₂O₃	1565	7.180	8.830	1.000	Al ₂ O ₃	large	Sublimes
Indium								Deposits P rich.
Phosphide	InP	1071	4.900	8.830	1.000	Graphite		Flash evaporate.
Indium Selenide	In₂Se₃	890	5.670	8.830	1.000			Sputter, coevaporate or flash.
Indium Telluride	In₂Te₃	667	5.800	8 920	1.000			Sputter, coevaporate or flash.
Indium Tin	IN203-	007	5.600	8.830	1.000			110311.
Oxide	SnO2	1526	6.430	8.830	1.000			
Iridium	Ir	2454	22.400	68.450	0.129		1	
Iron	Fe	1536	7.860	25.300	0.349	Al ₂ O ₃	medium	Attacks W. Films hard, smooth. Use gentle preheat to outgas.

MATERIAL TABLE

	50.0	4520	5 400	0.020	1.000			Disproportionates to Fe ₃ O ₄ at
Iron (III) Oxide	Fe₂O₃ FeBr₂	1538 684	5.180 4.640	8.830	1.000	<u>Го</u>		1530°C.
Iron Chloride	FeCl ₂	674	3.160	8.830 8.830	1.000	Fe Fe		Sublimes.
								Sublimes.
Iron Iodide	Fel₂ FeS	592	5.310	8.830	1.000	Fe		D
Iron Sulfide Lanthanium	гез	1195	4.740	8.830	1.000	Al ₂ O ₃		Decomposes.
Boride	LaB ₆	2210	2.610	8.830	1.000			Toxic.
Lanthanium Fluoride Lanthanium	LaF₃	1491	5.990	8.830	1.000			Sublimes. NO decomposition. Heat substrate over 300°C.
Oxide	La₂O₃	2315	6.510	8.830	1.000			Loses Oxygen.
Lanthanum	La	920	6.170	9.590	0.921	Al ₂ O ₃		Films will burn in air if scraped.
Lead	Pb	327	11.300	7.810	1.131	Al₂O₃ Quartz		
Lead Bromide	PbBr₂	373	6.680	8.830	1.000			Toxic.
Lead Chloride	PbCl₂	501	5.850	8.830	1.000	Al ₂ O ₃		Toxic. Little Decomposition.
Lead Fluoride	PbF ₂	855	8.240	8.830	1.000	BeO		Toxic, sublimes. Z.Physic 159,117 (1959).
Lead Iodide	Pbl ₂	502	6.160	8.830	1.000	Quartz		Toxic. J. Opt. Soc. 65,914.
Lead Oxide	PbO	888	9.530	8.830	1.000	Quartz, Al₂O₃		Toxic. No decomposition. J. Opt. Soc. Am. 52,161 (1962)
Lead Selenide	PbSe	1065	8.100	8.830	1.000	Graphite, Al₂O₃		Toxic, sublimes.
Lead Stannate	PbSnO₃	1115	8.100	8.830	1.000	Al ₂ O ₃		Toxic. Disproportionates
Lead Sulfide	PbS	1114	7.500	15.600	0.566			Toxic, sublimes. Little decompostion.
Lead Telluride	PbTe	917	8.160	8.830	1.000	Graphite, Al₂O₃		Vapors toxic. Deposits te rich. Sputter or coevaporate.
Lead Tendride	PbTiO ₃	917	7.520	8.830	1.000	Graphite, Al ₂ O ₃		Toxic.
					1.000			Metal reacts
Lithium	Li	180	0.530	1.500	5.887	Al ₂ O ₃	medium	rapidly in air.
Lithium Bromide	LiBr	550	3.460	8.830	1.000			
Lithium Chloride	LiCl	614	2.070	8.830	1.000			Use gentle preheat to outgas
Lithium Fluoride	LiF	841	2.640	11.410	0.774	Al ₂ O ₃		Rate control important. Use preheat to Outgas. App. Opt 11,2245 (1972).
Lithium Iodide	Lil	450	3.490	8.830	1.000			
Lithium Oxide	Li₂O	1427	2.010	8.830	1.000			

MATERIAL TABLE

								Ta impurity a
Lutetium	Lu	1652	9.840	18.396	0.480	AI_2O_3		problem.
Lutetium								
Oxide	Lu₂O₃	2487	9.410	8.830	1.000			Decomposes.
								Flammable,
								sublimes.
Magnosium	Mg	650	1.740	5.480	1.611	Al₂O₃, Vitreous carbon	largo	Extremely high rates possible.
Magnesium Magnesium	IVIg	050	1.740	5.480	1.011	Carbon	large	rates possible.
Aluminate	MgAl ₂ O ₄	2135	3.600	8.830	1.000			Natural spinel.
Magnesium	1116/ 11204	2155	5.000	0.000	1.000			Natural Spinei.
Bromide	MgBr₂	700	3.720	8.830	1.000			Decomposes.
Magnesium	<u> </u>							
Chloride	MgCl₂	714	2.320	8.830	1.000			Decomposes.
								Substrate heat
Magnesium						Graphite, Re-		required for
Fluoride	MgF₂	1248	3.000	13.860	0.637	infiltrated, Mo	medium	optical films.
Magnesium								
Iodide	Mgl₂	700	4.240	8.830	1.000			
								W produces
								volitile oxides.
Magnesium	N/~0	2000	2 5 0 0	24,400	0.444	Re-infiltrated,	La veza	App. Opt. 11,
Oxide	MgO	2800	3.580	21.480	0.411	Graphite, Al₂O₃	large	2243 (1972). Flammable,
Manganese	Mn	1241	7.200	23.420	0.377	Al ₂ O ₃		sublimes.
Manganese (II)		1241	7.200	23.420	0.377	AI2O3		subilities.
Sulfide	MnS	3.58	3.990	9.390	0.940			
Manganese	11113	5.50	5.550	5.550	0.540			
Bromide	MnBr₂	695	4.380	8.830	1.000			
Manganese	-							
Chloride	MnCl₂	650	2.980	8.830	1.000			
Manganese								
Oxide	Mn₃O₄	1705	4.860	8.830	1.000			
Mecury								Toxic,
Sulfide	HgS	583	8.100	8.830	1.000	Al ₂ O ₃		decomposes.
Mercury	Hg	-39	13.460	11.930	0.740			Toxic.
							medium	Careful degas
Molybdenum	Мо	2610	10.200	34.360	0.257	Re-infiltrated	to large	required
Molybdenum								
Boride	Mo ₂ B ₃	2200	7.480	8.830	1.000			
Molybdenum		2607	0.400	0.000	4 000			Evaporation of Mo
Carbide	Mo₂C	2687	9.180	8.830	1.000			(CO) ₆ yields Mo ₆ C
Molybdenum Ovido	Mao	705	4 600	0 020	1 000			
Oxide Molybdenum	MoO₃	795	4.690	8.830	1.000	Al₂O₃, BN		
Silicide	MoSi₂	2050	6.310	8.830	1.000			Slight O₂ loss.
Molybdenum		2030	0.510	5.550	1.000			Sign: 02 1035.
Sulifide	MoS₂	1185	4.800	8.830	1.000			Decomposes.
								•
Neodynium	Nd	1024	7.000	10.510	0.840	Al ₂ O ₃		Flammable.
Neodynium Fluoride	NdF₃	1410	6.510	8.830	1.000	Al₂O₃		Very little decomposition.
indunde	11013	1410	0.510	0.030	1.000			Loses O ₂ , films
								clear, EB
								preferred.
								Hygroscopic. N
Neodynium								varies with
Oxide	Nd₂O₃	1900	7.240	8.830	1.000	ThO₂		substrate temp.

MATERIAL TABLE

Nichrome IV	Ni/Cr	1395	8.500	26.760	0.330	Re-infiltrated, Graphite, Al ₂ O ₃	medium	Alloys with refractory metals.
		1355	0.500	20.700	0.550	Re-infiltrated,	mearann	Alloys with
Nickel	Ni	1453	8.910	26.680	0.331	Graphite, Al ₂ O ₃	medium	refractory metals
Nickel								
Bromide	NiBr₂	963	4.640	8.830	1.000			Sublimes.
Nickel Chloride	NiCl₂	1001	3.550	8.830	1.000			Sublimes.
Niekel Ovide	NIO	1000	6,600	0.020	1 000	41.0		Dissociates upon
Nickel Oxide	NiO	1990	6.690	8.830	1.000	Al ₂ O ₃		heating.
Niobium Niobium	Nb	2468	8.570	17.910	0.493			Attacks W Source
Boride	NbB₂	3050	6.970	8.830	1.000			
Niobium								
Carbide	NbC	3608	7.820	8.830	1.000			
Niobium Nitride	NbN	2573	8.400	8.830	1.000			Reactive, evaporate Nb in 10 ³ N ₂ .
Niobium Oxide	INDIN	2575	8.400	8.830	1.000			10 N ₂ .
(V)	Nb₂O₅	1520	4.470	8.830	1.000			
Niobium Telluride	NbTe₅		7.600	8.830	1.000			Composition variable.
Osmium	Os	3045	22.600	67.923	0.130			Toxic.
Ostilium	03	5045	22.000	07.923	0.130			Alloys with
Palladium	Pd	1552	12.000	24.730	0.357	Re-infiltrated, Al₂O₃	medium	refractory metals Spits in EB.
Palladium	PdO	870	8 700	8.830	1 000	4.0		Decembers
Oxide	PuO	870	8.700	8.830	1.000	Al ₂ O ₃		Decomposes. Films low in Ni
		1205	0 700	0.000	1 000	Al₂O₃, Vitreous		content. Use 84% Ni source. JVST 7
Permalloy	Ni/Fe	1395	8.700	8.830	1.000	carbon	medium	(6), 573 (1970). Metal reacts
Phosphorus	Р	44.2	1.820	8.830	1.000	Al ₂ O ₃		violently in air.
Platinum	Pt	1769	21.400	36.040	0.245	Graphite, Re- infiltrated	medium	Alloys, EB Req'd. Films soft. Poor adhesion.
Platinum								
Oxide	PtO₂	450	10.200	8.830	1.000			
Plutonium	Pu	635	19.000	8.830	1.000			Toxic, ratioactive
Polonium	Ро	254	9.400	8.830	1.000	Quartz		Radioactive. Metal reacts
								violently in air.
								Use gentle
Potassium	К	64	0.860	8.830	1.000	Quartz		preheat to outga
Potassium	KDr.	704	2 700	0.000	4 000	Quanta		Use gentle
Bromide Potassium	KBr	731	2.790	8.830	1.000	Quartz		preheat to outga Melt in air to
Chloride	ксі	770	1.980	4.310	2.049			outgas.
Potassium								Melt in air to
Fluoride	KF	846	2.480	8.830	1.000	Quartz		outgas.
Datasi								Melt in air to
Potassium Hydroxide	кон	360	2.040	8.830	1.000			outgas. Hydroscopic.
Potassium		500	2.040	0.000	1.000			Melt in air to
lodide	кі	686	3.130	4.415	2.000			outgas.

Praseodymium	Pr	936	6.770	8.830	1.000			Flammable.
Praseodymium Chloride	PrCl₃	786	4.020	8.830	1.000			
Praseodymium								
Oxide	Pr ₂ O ₃	2125	6.880	8.830	1.000	ThO₂		Loses Oxygen.
Radium	Ra	700	5.000	8.830	1.000			
Rhenium	Re	3180	21.040	58.870	0.150			
Rhenium	Do O	207	C 100	0.020	1 000			
Oxide	Re ₂ O ₇	297	6.100	8.830	1.000			
Rhodium	Rh	1966	12.410	42.050	0.210		medium	
Rubidium	Rb	38	1.530	3.476	2.540	Quartz		
Rubidium Chloride	RbCl	715	2.800	8.830	1.000	Quartz		
Rubidium		715	2.000	0.000	1.000	Quarte		
Iodide	Rbl	641	3.590	8.830	1.000	Quartz		
								Spits violently in
Ruthenium	Ru	2500	12.450	44.150	0.200			EB. Requires long degas.
Samarium	Sm	1072	7.540	9.920	0.890	Al ₂ O ₃		
Samarium	5111	1072	7.540	9.920	0.090	A12U3		Loses O₂. Films
Oxide	Sm₂O₃	2350	8.350	8.830	1.000	ThO₂		smooth, clear.
								A. IP Conf. Proc.
								On Mag. & Mag.
Samarium Sulfide	Sm₂S₃	1900	5.720	8.830	1.000			Mat. B, 5,860 (1971)
	0205	1000	01720	0.000	2.000			Alloys with Ta.
Scandium	Sc	1539	3.000	9.700	0.910	Al ₂ O ₃ BeO		Flammable.
Scandium Fluoride	ScF₃	1660	2 500	0 0 0 0	1 000			
Scandium	JUF3	1550	2.500	8.830	1.000			
Oxide	Sc₂O₃	2300	3.860	8.830	1.000			Loses O₂.
Selenium	Se	217	4.820	10.220	0.864	Al₂O₃ Vit Carbon		Very toxic. Poisons vacuum systems. JVST 9, 387 (1972) JVST 12, 573 & 807 (1975).
Silicon	Si	1410	2.320	12.400	0.712	BeO Ta Vit Carbon		Alloys with W; Some SiO produced above 4x10 ⁶ Torr. App. Opt. 15,2348 (1976).
Silicon (II) Oxide	SiO	1702	2.130	10.150	0.870			
Silicon Boride	SiB₄	1870	2.470	8.830	1.000			
Silicon Carbide	SiC	2700	3.220	8.830	1.000			Sputtering Preferred.
Silicon Dioxide	SiO₂	1713	2.200	8.250	1.070	Graphite, Re- infiltrated, Mo	large	Quartz xlnt. in EB
Silicon Monoxide	SiO	1702	2.100	17.660	0.500	Graphite, Re- infiltrated, Mo	large	Sublimes.
Silicon Nitride	Si₃N₄	1900	3.440	8.830	1.000			Sublimes.
Silicon Sulfide	SiS		1.850	8.830	1.000	Quartz		

Silicon Telluride	SiTe₂		4.390	8.830	1.000	Quartz		Toxic.
						Graphite, Re-	none or	Evaporates well
Silver	Ag	961	10.500	16.690	0.529	infiltrated, Mo	small	from any source.
Silver Bromide	AgBr	431	6.470	7.480	1.180	Quartz		
Silver Chloride	AgCl	455	5.560	6.690	1.320	Quartz		
Silver Iodide	Agl	558	6.010	8.830	1.000			
								Metal reacts
Sodium	Na	97	0.970	1.840	4.799			violently in air.
Sodium Bromide	NaBr	755	3.200	8.830	1.000	Quartz		Use gentle preheat to outgas
Sodium Chloride	NaCl	801	2.170	5.620	1.571	Quartz		Little decompostion. Use gentle preheat to outgas Hydorscopic.
Sodium	Nucl	001	2.170	5.020	1.571	Quartz		Toxic. Use gentle
Cyanide	NaCN	563	1.595	8.830	1.000			preheat to outgas
Sodium						_		Use gentle
Fluoride	NaF	988	2.560	8.830	1.000	BeO		preheat to outgas
Sodium Hydroxide	NaOH	318	2.130	8.830	1.000			Melt in air to outgas. Deliquescent.
Sodium Iodide	Nal	651	3.670	8.830	1.000			
Strontium	Sr	769	2.620	8.830	1.000	Vit Carbon		Toxic. Wets but does not alloy with refractory metal May react violently in air.
Strontium	-							
Fluoride	SrF ₂	1450	4.240	8.830	1.000	Al ₂ O ₃		
Strontium Oxide	SrO	2461	4 000	0.020	1 000			Sublimes. Reacts
Strontium	310	2461	4.900	8.830	1.000	Al ₂ O ₃		with Mo and W.
Sulfide	SrS	2002	3.700	8.830	1.000			Decomposes.
	_							Toxic. Poisons
Sulphur	S	115	2.070	3.860	2.288			vacuum system.
Tantalum	Та	2996	16.600	33.700	0.262	Re-infiltrated	medium	Forms good films.
Tantalum Boride	TaB₂	3000	11.150	8.830	1.000			
Tantalum Carbide	TaC	3880	14.650	8.830	1.000			JVST 12, 811 (1975).
Tantalum	TaN							Reactive; evaporate Ta in $10^3 N_2$.
Nitride Tantalum	Idiv	3360	16.300	8.830	1.000	Graphite, Re-		10° N2.
Pentoxide	Ta2O5	1872	8.200	29.430	0.300	infiltrated, Mo	large	
Tantalum Sulfide	TaS₂	3000	6.860	8.830	1.000		-	
Technetium	Тс	2200	11.500	8.830	1.000			
T - U	То	4-2	6 9 - 9		0.000	Al ₂ O ₃		Toxic. Wets w/o
Tellurium	Te	452	6.250	9.810	0.900	Quartz		alloying.
Terbium	Tb	1357	8.270	13.380	0.660	Al ₂ O ₃		Dortiolly
Terbium Oxide	Tb₂O₃	2387	7.870	8.830	1.000			Partially decomposes.

Thallium	TI		11.850	5.700	1.549			
Thallium								
Bromide	TiBr	480	7.560	4.989	1.770	Quartz		Toxic, sublimes.
Thallium								
Chloride	TiCl	430	7.000	7.298	1.210	Quartz		Toxic, sublimes.
Thallium								
lodide (B)	TII	440	7.090	8.830	1.000	Quartz		Toxic, sublimes.
Thallium Oxide	Tl₂O₃	717	9.650	8.830	1.000			Toxic. Goes to TI₂ at 850°C.
Thorium	Th	1875	11.700	16.352	0.540			Toxic, ratioactive.
Thorium								Radioactive,
Bromide	ThBr₄		5.670	8.830	1.000			sublimes.
Thorium	T I 0							
Carbide	ThC₂	2776	8.960	8.830	1.000	Carbon		Radioactive.
Thorium								Radioactive. Heat substrate to above 150°C. JVST
Fluoride	ThF₄	900	6.320	11.932	0.740	Vit Carbon		12,919 (1975).
Thorium Oxide	ThO₂	3050	9.860	8.830	1.000			Radioactive.
Thorium	1102	3030	9.000	0.000	1.000			Radioactive. Films
Oxyfluoride	ThOF₂	900	9.100	8.830	1.000			often ThF ₄ .
Thulium	Tm	1545	9.320	16.981	0.520	Al ₂ O ₃		Sublimes.
		1545				AI ₂ U ₃		
Thulium Oxide	Tm₂O₃		8.900	8.830	1.000			Decomposes.
Tin	C n	222	7 200	12 200	0 724	Do infiltrated		Wets Mo; use Ta
Tin	Sn	232	7.300	12.200	0.724	Re-infiltrated	none	liner in EB guns. Films from W
								oxygen deficient
Tin Oxide	SnO₂	1131	6.990	8.830	1.000	Al ₂ O ₃	large	oxidize in air.
							Ū	JVST 12, 110
Tin Selenide	SnSe	862	6.180	8.830	1.000	Quartz		(1975).
Tin Sulfide	SnS	882	5.220	8.830	1.000	Quartz		
Tin Telluride	SnTe	780	6.440	8.830	1.000	Quartz		
Thi Tenuriue	JITE	780	0.440	8.830	1.000	Quartz		Alloys with
								refractory metals;
								evolves gas on
Titanium	Ti	1668	4.500	14.060	0.628	Re-infiltrated		first heating.
Titanium								
Boride	TiB₂	2900	4.500	8.830	1.000			
Titanium	TIC							JVST 12, 851
Carbide	TiC	3140	4.930	8.830	1.000	Cranhita Da		(1975).
Titanium Dioxide (rutile)	TiO₂	1843	4.260	22.070	0.400	Graphite, Re- infiltrated, Mo	large	
Titanium	1102	1043	4.200	22.070	0.400	Graphite, Re-	iui ge	
Monoxide	TiO	1750	4.930	8.830	1.000	infiltrated, Mo	large	
Titanium						,	Ĭ	
Silicide	TiSi₂	1540	4.390	8.830	1.000			
								Forms volatile
							medium	oxides. Films hard
Tungsten	W	3387	19.300	54.170	0.163		to large	and adherent.
Tungsten	\A/D	2000	12 750	0.000	1 000			
Boride Tungsten	WB ₂	2900	12.750	8.830	1.000			
Carbide	WC	2785	15.600	58.480	0.151			
Tungsten		2705	13.000	50.400	0.131		1	Sublimes Preheat
Oxide	WO₃	1473	7.160	8.830	1.000			to outgas. W

								reduces oxide slightly. App. OPT 28, 1497.
Tungsten								
Selenide	WSe ₂	2150	9.000	8.830	1.000			
Tungsten Silicide	WSI₂	2165	9.400	8.830	1.000			
Tungsten Sulfide	WS₂	1250	7.510	8.830	1.000			
Tungsten Telluride	WTe₃		9.490	8.830	1.000	Quartz		
Uranium	U	1132	18.700	37.100	0.238			Films oxidize.
Uranium (IV)		1152	10.700	57.100	0.230			Ta causes
Oxide	UO₂	2500	10.900	8.830	1.000			decomposition.
Uranium	-							
Carbide	UC₂	2260	11.280	8.830	1.000	Carbon		Decomposes.
Uranium								Decomposes at
Oxide	U₃O₃		8.300	8.830	1.000			1300°C to UO₂.
Uranium								
Phosphide	UP ₂		8.570	8.830	1.000			Decomposes.
Uranium								
Tetrafluoride	UF₄	1036	6.700	8.830	1.000			
								Wets Mo. EB evaporated films
Vanadium	v	1890	5.960	16.660	0.530			preferred.
Vanadiani	•	1050	5.500	10.000	0.550			Sublimes. Deposit
								V metal @ 7x10 ³
								O₂ JVST A2(2), 301
Vanadium (IV)								(1984) & A7 (3),
Oxide	VO ₂	1967	4.340	8.830	1.000			1310 (1989).
Vanadium (V)	_							
Oxide	V_2O_5	690	3.360	8.830	1.000	Quartz		
Vanadium								
Boride	VB ₂	2400	5.100	8.830	1.000			
Vanadium								
Carbide	VC	2810	5.770	8.830	1.000			
Vanadium								
Nitride	VN	2320	6.130	8.830	1.000			
Vanadium								
Silicide	VSI ₂	1700	4.420	8.830	1.000			
Ytterbium	Yb	824	6.980	7.810	1.131			Sublimes.
Ytterbium								
Fluoride	YbF₃	1161	8.190	8.830	1.000			
Ytterbium								Sublimes. Loses
Oxide	Yb₂O₃	2227	9.170	8.830	1.000			oxygen.
Yttrium	Y	1509	4.340	10.570	0.835	Al₂O₃	medium	High Ta solubility.
Yttrium								
Fluoride	YF₃	1152	4.010	8.830	1.000			
								Sublimes. Loses
Yttrium Oxide	Y_2O_3	2410	5.010	8.830	1.000	С		oxygen, films smooth and clear.
								Evaporates well
								under wide range
								of conditions. Use
Zinc	Zn	419	7.040	17.180	0.514	Мо		Mo E.B. Liner.

Zinc Antimonide	Zn₃Sb₂	570	6.330	8.830	1.000			
						Carlana		D
Zinc Bromide	ZnBr₂	391	4.990	8.830	1.000	Carbon		Decomposes.
Zinc Fluoride	ZnF₂	872	4.950	8.830	1.000	Quartz		
Zinc Nitride	Zn₃N₂		6.220	8.830	1.000			Decomposes.
Zinc Oxide	ZnO	1975	5.610	15.880	0.556		large	Anneal in air at 450°C to reoxidize.
Zinc Selenide	ZnSe	1526	5.260	12.230	0.722	Quartz	10180	Toxic. Use gentle preheat to outgas. Sublimes well. Z.Angew.Phys. 19,392 (1965).
Zinc Sulfide	ZnS	1700	4.090	11.390	0.775			Sublimes. Gentle preheat req'd. Sticking coeff varies with sub temp. JVST 6,433 (1969).
Zinc Telluride	ZnTe	1240	6.340	8.830	1.000			Toxic. Sublimes. Use gentle preheat to outgas.
Zircon	ZrSiO₄	2550	4.560	8.830	1.000			
Zirconium	Zr	2128	6.510	14.720	0.600		medium	Flammable. Films oxidize readily.
Zirconium Bromide	ZrB₂	3000	6.090	8.830	1.000			
Zirconium Carbide	ZrC	3540	6.730	8.830	1.000			
Zirconium Nitride	ZrN	2980	7.090	8.830	1.000			Reactively evaporate in 10 ³ N₂ atmosphere.
Zirconium Oxide	ZrO₂	2715	5.490	8.830	1.000		large	Films oxygen deficient, clear and hard.
Zirconium Silicide	ZrSi₂	1790	4.880	8.830	1.000			

12 MAINTENANCE AND SERVICE

12.1 MAINTENANCE

The 862 does not require any special maintenance.

12.2 CLEANING

For cleaning the outside of the device, a slightly moistened cloth will usually do. Do not use any aggressive or abrasive cleaning agents.

Mains voltage.

Components inside of the 862 controller are components to mains voltage.

Protect the device from liquids.

Do not open the device.

13 STORAGE AND DISPOSAL

13.1 PACKAGING

Please keep the original packaging. The packaging is required for storing the 862 and for shipping it to a Telemark service center.

13.2 STORAGE

The 862 may only be stored in a dry room. The following requirements must be met:

Ambient temperature: -20....+60 °C

Humidity: as low as possible. Preferably in an air-tight plastic bag with a desiccant.

13.3 DISPOSAL

The product must be disposed of in accordance with the relevant local regulations for the environmentally safe disposal of systems and electronic components.

13.4 WEEE

The use of the Waste Electrical and Electronic Equipment (WEEE) symbol (see Figure 16-1) indicates that this product may not be treated as household waste. By ensuring this product is disposed of correctly you will protect the environment. Recycling information of this product can be obtained at the place of sale, your household waste disposal service provider, or local authority.

STORAGE AND DISPOSAL

Figure 13-1, WEEE Symbol

14 WARRANTY CONDITIONS

14.1 LIMITED WARRANTY

Telemark products are warranted to be free of defects in materials and/or workmanship for a period of 12 months after shipment from the Telemark factory. This warranty is valid only for normal use, where regular maintenance has been performed. This warranty shall not apply if the product has been repaired or alterations made by anyone other than authorized Telemark service representatives, or if a malfunction or damage occurs through abuse, misuse, negligence, shipping damage, or other accident. No charge will be made for repairs covered by this warranty at a Telemark service facility. Telemark reserves the right to determine if the malfunction was caused by defective materials or workmanship. The customer will be responsible for freight charges to Telemark's service facility.