Telemark cryochillers provide efficient closed-loop cryogenic refrigeration for water vapor pumping with cooling capacities from 1200W to 4800W. Telemark cryochillers support state of the art communications and full system integration. The digital control package operates at 24V and contains a battery backup. On-board RS-232, RS-485 and Ethernet communications will meet your remote operation needs and supports complete data-logging. Optional Profibus and EtherCAT interfaces are available. Analog system control is also available. The back-lit on-cabinet LCD screen readouts allow rapid scrolling through all available monitor points. Likewise, all available monitor points can be sent remotely to a deposition controller for automated operation.
Direct competitor to Brooks Polycold® Registered trademark of Brooks Automation, Inc.
The model 1200 deals with heat loads up to 1200 watts and can typically trap up to 55,000 l/sec of water vapor, at a variety of vacuum depths. The 1800 deals with heat loads up to 1800 watts and typically traps up to 80,000 l/sec of water vapor at a variety of vacuum depths. The model 2400 handles up to 2400 watts and traps up to 125,000 l/sec, in a typical installation. The 3000 handles heat loads to 30000 watts, and typically traps up to 165,00 l/sec of water vapor. The 3600 can manage a combined heat load of 3600 Watts and typically traps up to 200,000 l/sec.
When determining the optimum vapor trapping capability to significantly improve pump-down times, a preliminary goal should be to achieve at least four times the current water vapor trapping capability of your high vacuum pump.
Selection of the correct model cryotrap depends upon two primary factors: the amount of water vapor that needs to be trapped, and the total heat load the system needs to manage.
Heat load
Total heat load is a combination of: 35 watts/square ft. of cryosurface, 8 Watts per linear ft. of insulated refrigerant line, “latent” heat loads which are extensive at shallow vacuum depth but can be ignored at 10-4 or below, and in-chamber heating of:
Working from Chamber drawings or specification, a custom designed cryocoil can be fabricated to perfectly fit your chamber and deliver optimal vapor trapping and heat removal performance
Cryocoils are made from copper tubing (stainless steel is also available) and constructed with a stainless steel feedthrough.
Many different coil shapes and configurations allow for optimum efficiency of your cryosurface.
Digital Control
Cryochiller Digital Control
Cryochiller Display
The advanced digital control package operates at 24V, has battery back-up, and is fully CE compliant. Two 20 character 1/2” high backlit read-outs allow for easy reading and rapid scrolling through all available monitor points.
Convenient interface capability for RS-232, RS-485 or Ethernet (TCP/IP) allows for easily adapted system controls or external data-logging. This advanced control package is placed inside the main unit housing creating a smaller overall system footprint. The flexible capabilities of the controller remove the need for additional and costly system control options or specialized interface modules. A 37 pin remote connector is included for those wishing remote manual or analog system control.
Feedthroughs
Cryochiller Feedthrough
(Available separately or as part of the cryocoil)
The dual pass feedthrough gives access to the chamber while maintaining the thermal isolation between the feed and return tubing. On the external side, couplings mate directly with the refrigerant line. On the chamber side, the feedthrough is braised to the cryosurface lines.
Refrigerant Line
Cryochiller Refrigerant Line
The “refrigerant line” contains both a feed line and a return line of copper tubing with stainless steel couplings to mate with the cryochiller and with the feedthrough. The refrigerant line is protected with foam type thermal insulation to minimize heat loss and protect against exposure to open air.
Dual Circuit Cryochillers
All five models are available in a dual circuit configuration, in which the systems provide independent control and cooling of two surfaces. Common configurations are two cryocoils or a cryocoil and a cryobaffle. Each circuit can cool or defrost independently with only a modest effect on the other circuit. For cryobaffles protected by a gate valve, the baffle can be constantly maintained at cryo-temperature while the in-chamber cryocoil is cycled for expected process time improvements. Each circuit is independently controlled and monitored.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.